AD-A160 136

UNCLASSIFIED

COMPARING THE EFFECTIVENESS OF SOFTHARE TEST!NG 11
STRATEGIESCU) MARYLAND UNl CO LEGE PRRK D T OF
COMPUTER SCIENCE ¥ R BASILI ET CS-TR-!SIL
AFOSR-TR-85-0805 F49620- 80 C OOB 9/2

NL

& AN AR A
P PRSNGSR Y SN N O I MRS IR WA I,

2L

7

e
»
g

.v-.
'I .l .'
~a 8.8

I
s

FEEE
EE

(4

fEEEEEEEE
N
o

4
E
3

=
o

s e pe

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAL OF STANDARDS - 1963~ A

AR NN e 8 T A e e o g o "

. nosk.m. 85.-0805

. i A-’ B KA
R ST
I |
. v Technical Report TR-1301 May 19853 DLy B
U -
o . [
(o Comparing the Effectiveness of

= Jofitware Testling Strategles . .
< Victor R. Basili -
] Richard W. Selby, Jr. e
Q Department of Computer Science -
< University of Marw-land : LT
College Park '

COMPUTER SCIENCE .
TECHNICAL REPORT SERIES .
.. DTIC

ELECTE

B | UNIVERSITY OF MARYLAND) . .
E " - . COLLEGE PARK, MARYLAND ‘7. . '°
| wl | 20742 e
§ i ' ; ' ”ﬁweﬂ:::nﬁ;wﬂ"‘

rvv-"-rf v
o - |
1%]
-
o .
o
| 3
o
a3
©

i) il g - P by -
T T T R e N L N L e e e L e O R S N R N Y Y N L L T Y N T T T N T T T TR

¢ I I

3

g

Cd

"

i

2

v o

a . Technical Report TR-1501 May 1985

X Comparing the Effectiveness of

L~ Software Testing Strategies

Victor R. Basili

Richard W. Selby, Jr.

;; Department of Computer Science

University of Marvland
College Park

. | DTIC

ELECTE
0CT11198

.‘- "l .

st a8
PR

N B

. KEYWORDS :

software testing, functional testing, structural testing, code reading,
off-line software review, empirical study, methodology evaluationm,
software measurement

Research supported in partapy the Alr Force 0Office of Scientific Research
. lontract AFOSR-F49620-80-C-001 and the National Aeronautics and Space
Administration Grant NSG-5123 to the University of Maryland. Computer
support provided in part by the facilities of NaSA/Goddard Space Flight
. Center and the Computer Science Center at the University of Maryland.

¢

AIR FORC S("F‘E’Y Tpov t"‘*r"‘pyvyc RECTL o A men)
— EATIZEDY 7 "
“DISTRIBUTION STATEMENT A T
Approved for public releasey . -
tioa ted ISR
x Chief, Sociudiol e ctien Division

. - .
.":s‘ SO CA A CN

e e e e e
o . T N

-\-‘ Y N \ .‘. AT

L

..-:._-'\(‘-:\".'-‘ (‘1’.. LY n‘\-'\-; LIS . ’~ RS
N - L) L O} 3

ABSTRACT

\Thls study compares the strategles of code readlng, functional testing, and structur-
al testing In three aspects of software testing: fault detectlon eflectlveness, fault detec-
tlon cost, and classes of faults detected. Thirty two professional programmers and 42
advanced students applled the three technlques to four unlt-sized programs ln a frac-
tional factorial experimental design. The major results of this study are the following.
1) Wlth the professional programmers, code reading detected more software faults and
had a higher fault detectlon rate than did functlonal or structural testing, while func-
tlonal testing detected more faults than did structural testlng, but functional and struc-
tural testlng were not different In fault detection rate. 2) In one advanced student sub-
Ject group, code reading and functlonal testing were not different ln faults found, but
were both superior to structural testing, while in the other advanced student subject
group there was no difference among the technlques. 3) With the advanced student sub-
Jects, the three technlques were not different ln fault detection rate. 4) Number of
faults observed, fault detectlon rate, and total effort In detection depended on the type
of software tested. 3) Code readlng detected more lnterface faults than did the other
methods. 6) Functional testing detected more control faults than did the other
methods. 7) When asked to estlmate the percentage of faults detected, code readers
gave the most accurate estlmates whlle functional testers gave the least accurate est!-

mates.

e e i

B ::-c ,‘\w;) ’ ——A{

\
a—
| e —

'''''''''

A A L g O Sl A SR L SN e e

'3

A B S A N b Dt .

Table of Contents

1 Introduction eesssascssnnsensasonases - 1
2 Testing Technlques . . sreassssnoncaneenne 1
2.1 Investigation Goals . . . crececsrsrassracessssssssene 2
3 Empirical Study cessensessssnsae seceessssssansns crasesansnncsssresenaas . 2
3.1 Iterative Experimentatlon anecessonans ensconsarace casssnases ceeasesanesssonne ceseesssansassonnans 3
3.2 Subject and Program/Fault SeleCtlOnNcccccveeeeeerserececaceraensesassoseanesansosecosases 3
3.2.1 SUDJECUS .cverectucsscsesecssocacoscsrassessascssssnssnsansnssensoncarcsasssans 3
3.2.2 Programsc.ccceeeeee . 5
3.2.3 Faults . ressrssssssnsesesrnsnnssnsss srerescansaresnasas 6
3.2.3.1 FAUIL OTIZIN cuceeenrrrieeeecerinnrcnntcrtsssnecsssocsssstssesssssstessstscssasasensens 8
3.2.3.2 Fault Classiflcatlon ...cccceceececiaccecoesenncene sestesessasessssansesrseransasnsas 7
3.2.3.3 Fault Description ceesressasvacesane ceavenetcnatieans cecestnsncasesrsesesneves 8
3.3 Experimental Design ...cccccreaeee ceseesesentrasssanesstesastecrteeetstonsntsesesererterentensntestrarsas 8
3.3.1 Independent and Dependent Varlables esesserrsascsnssnnssesrnteresnnsnassnne 8
3.3.2 Analysis of Variance Modelcccceenneenee.. eesesacsnsensansaessanse vesessasse 9
3.4 Experimental Operationccceeececnsces sesctecesesensonnnse Cresesrsersrastsestnasesnesssvases 12
4 Data Analysis ..c.ccceceeececcceccavene cessssnsessesnanes sveresssessessascsces cessennee veeecasneteenrsrsnsassnnsanes 14
4.1 Fault Detection EffeCUIVENESS .uiccicrcsrsscsscrccsscnccrstsessssssssensessssssessasssssansossssansns 14
4.1.1 Data DISIIIDULIONS cicccereinecrenccsecssasscrscsessersonsosesasssnsressassasssseserassssansensass 14
4.1.2 Number of Faults Detected ceeseresitancsrnsesrestansssansesnsane crecssnesrasssensane 13
4.1.3 Percentage Of Faults Detected ..c..ccivcecececrecnecrsseosncrasressesnnsssaessesassesensans 15
4.1.4 Dependence On SOMtWAre TYDE .ccccicienieeeriacosassncsecosaisessesesnasesanassens aseeae 16
4.1.5 Observable vs, Observed Faults ...cccccceecercnateececennaenns cerrsensnsesasensesarenanes 17
4.1.6 Dependence on Program COVEraAgeccccccecereseiesnsecssssssencnsaccosssscesncassses 17
4.1.7 Dependence on Programmer EXDPertlSe ...ccccccececncecacscarasesssacerasesssesesessoe 18
4.1.8 Accuracy Of Self-EStImMAles “.cccciiciiiiricmacrireconainsesieissisesserssssssisresasacaseesss 18
4.1.9 Dependence On INLEractiONS ...cccecrcrerecencecisrecrccrnereroresasserosssesracassssosases 18
. 4.1.10 Summary of Fault Detectlon EffectiVenessccccceeiciinriicrsinicrcacecnanes 19
4.2 Fault DetectiOn COSU .iciiiircreiiernntesesoreosssassecnrsessssssesssssrsssesssssssresssessasasssassasass 19
4.2.1 Data DISITIDULIONS civerrereesiierccncssssestaciessenrsrastesssssssaonssssssncesosssssnnssssssse 20
4.2.2 Fault Detectlon Rate and Total TIMEe ..cviiviieiiniiiiiniirtimniieimceninnsoinaee 20
4.2.3 Dependence OR SOftWATrE TYDE .cciicireiarratiiserissciarerssossnscsssossssssssansasncess 21
4.2.4 COMPULET COSLS .uivrrviiasrscrvcovsastossvccsssarmessasessssssrosssosnsssssssnssssassassrssstossas 22
4.2.5 Dependence on Programmer EXDertlSe ..ccccciiiieieiertacectenssterasesnsssancesaanes 22
.
e

P I

N % T TR W -~ EA A s T o T o O T o T O e T W e e Y T e v, s T T - T e
N

>

N

\.

R 4.2.6 Dependence on INLEraACLIONS ..ccccrceeieenmasenneesceessssansacsacasassssseesssssesssassenses 23

o 4.2.7 Relationships Between Fault Detection Effectlveness and Costcccee. 23
4.2.8 Summary of Fault DetectiOn COSt .ccccccecreersecrssacsscssesnsesoncensescassesnsessones 23

4.3 Characterization Of Faults Detectedcccccsssecsessssrsosaesssassassasssssassassnens ——. 24
. 4.3.1 Omission vs. Commission ClasSIfICAtIONccveeeccsennseees cessesenane cesserens . 24
.:j: 4.3.2 Six-Part Fault Classificatlon R vesseesrees 25
' 4.3.3 Observable Fault Classificatlon . 25
4.3.4 Summary of Characterization of Faults Detectedccccccerameuernenanes 26

5 Conclusionse.e.. cavessecssenses csseseseasasens . 28

68 Acknowledgement cotusecssessassrensacanasarace enescsnratcsennnseses .28

7 AppendiCescceecceeseeecnns cesncersaseas ceesessnsstssesesacettasescrsecesetnasses vecescssensesace secesacssnses . 20

0 7.1 Appendlx A. The Specificatlons for the Programs ceecermmeensansennesennanaeas 29
:;1 7.2 Appendix B. The Source Code for the Programs ceesesenen cseesne cosessevecesas . 32
o 8 REfErENCES .coveouersesscessassnssessasassses eesesresnssssesssassnsansessransssne caseresessanes crecensssecsanseses 50

.

RS

..............

1. Introduction

The processes of software testing and defect detectlon continue to challenge the
software communlty. Even though the software testing and defect detectlon activitles
are Inexact and Inadequately understood, they are cruclal to the success of a software
project. The controlled study presented addresses the uncertainty of how to test soft-
ware effectlvely. In this Investigation, common testing technlques were applied to
different types of software by subjects that had a wide range of professional experience.
This work Is Intended to characterize how testing effectiveness relates to several factors:
testlng technique, software type, fault type, tester experience, and any lnteractions
among these factors. Thls examlnatlon extends previous work by incorporating different
testing technlques and a greater number of persons and programs, whlle broadenlng the

scope of 1ssues examlned and adding statistical signiflcance to the conclusions.

The followlng sections describe the testing technlques examined, the investigation

goals, the experimental deslgn, operation, analysis, and conclusions.

2. Testing Techniques

To demonstrate that a particular program actually meets Its specifications, profes-
sional software developers currently utlllze many different testing methods. Before
presenting the goals for the emplrical study comparing the popular techniques of code
reading, functional testing, and structural testing, a description wlill be given of the test-
Ing strategles and thelr different capabllities (see Figure 1.). In functional testing, which
1s a “black box" approach [Howden 80}, a programmer constructs test data from the
program'’s specification through methods such as equlvalence partitioning and boundary
value analysis [Myers 79]. The programmer then executes the program and contrasts Its
actual behavior with that indicated In the specification. In structural testing, which Is a
“whlte box'" approach {Howden 78, Howden 81|, a programmer Inspects the source code
and then devises and executes test cases based on the percentage of the program's state-
ments or expressions executed (the ‘‘test set coverage') [Stuck! 77]. The structural cov-
erage criteria used was 100% statement coverage. In code readlng by stepwise abstrac-
tion, a person ldentifles prime subprograms In the software, determines their functions,

and composes these functions to determine a functlon for the entire program Mills 72,

Linger, Mllls & Witt 79]. The code reader then compares this derived function and the

specificatlons (the Intended function). In order to contrast these various strategles, an
A emplrical study has been conducted using the technlques of code readlng, functional
; testlng, and structural testing.

2.1. Investigation Goals

The goals of this study comprise three different aspects of software testlng: fault
detectlon effectiveness, fault detectlon cost, and classes of faults detected. An appllca-
tlon of the goal/question/metric paradigm (Baslll & Selby 84, Baslll & Welss 84| leads to
the framework of goals and questions for this study appearing in Figure 2.

The first goal area Is performance oriented and includes a natural first question
(ILA): which of the technlques detects the most faults In the programs? The comparison
between the technlques Is belng made across programs, each with a different number of
faults. An alternate lnterpretation would then be to compare the percentage of faults
found in the programs (question I.A.1). The number of faults that a technlque exposes
should also be compared; that Is, faults that are made observable but not necessarily ob-
served and reported by a tester (I.A.2). Because of the differences In types of software
. ¢ and ln testers’ ablllties, It Is relevant to determine whether the number of faults detect-
v ed Is elther program or programmer dependent (I.B, I.C). Since one technique may find
‘ a few more faults than another, It becomes useful to know how much effort that tech-
nlque requires (II.A). Awareness of what types of software require more effort to test
(II.B) and what types of programmer backgrounds require less effort in fault uncovering
(0.C) 1s also quite useful. If one s interested In detecting certaln classes of faults, such
as In error-based testing [Foster 80, Valdes & Goel 83], it Is appropriate to apply a tech-
nlque sensltlve to that particular type (III.A). Classifylng the types of faults that are

observable yet go unreported could help focus and Increase testing effectiveness (III.B).

3. Empirical Study

AdmIittedly, the goals stated here are quite ambltlous. In no way Is It implled that
thls study can deflnitively answer all of these questions for all environments. It is In-

tended, however, that the statistically signlficant analysls presented lends insights into

thelr answers and Into the merit and appropriateness of each of the technlques. Note

A

that this study compares the individual appllcation of the three testing technlques ln
order to ldentify thelr distinct advantages and dlsadvantages. This approach Is a first
step toward proposing a composite testlng strategy, which possibly Incorporates several
testing methods. The following sectlons describe the empirical study undertaken to pur-
sue these goals and questions, Including the selection of subjects, programs, and experi-

mental design, and the overall operation of the study.

3.1. Iterative Experimentation

The emplrical study consisted of three phases. The first and second phases of the
study took place at the Unlversity of Maryland In the Falls of 1982 and 1983 respective-
ly. The third phase took place at Computer Sclences Corporatlon (CSC - Sliver Spring,
MD) and NASA Goddard Space Flight Center (Greenbeit, MD) In the Fall of 1984. The
sequemlal experimentation supported the lteratlve nature of the learning process, and
enabled the Initlal set of goals and questions to be expanded and resolved by further
analysis. The goals were further refilned by dlscussions of the prellminary results [Selby
83, Selby 84]. These three phases enabled the pursuit of result reproducibllity across en-

vironments having subjects with a wide ranc:. of experlence.

3.2. Subject and Program/Fault Selection

A primary consideration in this study was to use a reallstic testing environment to
assess the eflectiveness of these dlfferent testing strategles, as opposed to creating a best
possible testing situation [Hetzel 76]. Thus, 1) the subjects for the study were chosen to
be representative of different levels of expertise, 2) the programs tested correspond to
different types of software and reflect common programming style, and 3) the faults In
the programs were representative of those frequently occurring ln software. Sampling
the subjects, programs, and faults !n this manner 1s Intended to evaluate the testing
methods reasonably, and to facllltate the generallzation of the results to other environ-

ments.

3.2.1. Subjects

The three phases of the study Incorporated a total of 74 sublects; the individual

phases had 29, 13, and 32 sublects respectively. The subjlects were selected, based on

several criterfa, to be representative of three dlfferent levels of computer sclence exper-
tise: advanced, intermediate, and junlor. The number of subjects In each level of exper-

tise for the different phases appears in Flgure 3.

The 42 subjects In the first two phases of the study were the members of the upper
level “‘Software Deslgn and Development’™ course at the Unlversity of Maryland In the
Falls of 1982 and 1983. The indlviduals were elther upper-level computer sclence majors
or graduate students; some were worklng part-time and all were In good academlc
standing. The toplcs of the course Included structured programming practices, function-
al correctness, top-down design, modular specification and design, step-wise reflnement,
and PDL, In additlon to the presentation of the technlques of code reading, functional
testing, and structural testing. The references for the testing methods were [Mills 75,
Fagan 768, Myers 79, Howden 80}, and the lectures were presented by V. R. Baslll and F.
T. Baker. The subjects from the Unlversity of Maryland spanned the Intermedlate and
Junlor levels of computer sclence expertise. The assignment of Individuals to levels of
expertise was based on professional experlence and prior academlc performance In
relevant computer sclence courses. The Individuals In the first and second phases had
overall averages of 1.7 (SD = 1.7) and 1.5 (SD == 1.5) years of professional experlence.
The nine intermedlate subjects In the first phase had from 2.8 to 7 years of professional
experience (average of 3.9 years, SD = i.3), and the four ln the second phase had from
2.3 to 5.5 years of professional experience (average of 3.2, SD = 1.5). The twenty
Junlor subjects In the first phases and the nlne In the second phase both had from O to 2
years professional experience (averages of 0.7, SD = 0.6, and 0.8, SD == 0.8, respective-
1y).

The 32 sublects In the third phase of the study were programmlng professionals
from NASA and Computer Sciences Corporation. These Individuals were mathematl-
clans, physicists, and engineers that develop ground support software for satellltes.
They were famillar with all three testing technlques, but had used functlonal testing pri-
marily. A four hour tutorlial on the testlng technlques was conducted for the subjects
by R. W. Selby. Thls group of subjects, examined In the third phase of the experiment,

spanned all three expertise levels and had an overall average of 10.0 (SD = 3.7} years

professional experlence. Several criteria were considered In the assignment of subjects to

. '..'4".' Lt

L0 AN I T S donal e A g

expertise levels, Including years of professional experience, degree background, and thelr
manager's suggested assignment. The elght advanced subjects ranged from 9.5 to 20.5
years professional experience (average of 15.0, SD = 4.1). The eleven intermedlate sub-
Jects ranged from 3.5 to 17.5 years experlence (average of 10.9, SD == 4.98). The thirteen

Junlor subjects ranged from 1.5 to 13.5 years experience (average of 6.1, SD = 4.4).

3.2.2. Programs

The experimental design enables the distinction of the testing technijques whlle al-
lowing for the effects of the different programs belng tested. The four programs used In
the Investigation were chosen to be representative of several different types of software.
The programs were selected speclally for the study and were provided to the subjects for
testing; the subjlects dld not test programs that they had written. All programs were
written In a hlgh-level language with which the subjects were famlillar. The three pro-
grams tested In the CSC/NASA phase were written In FORTRAN, and the programs

tested In the Unlversity of Maryland phases were written in the Simpl-T structured pro-

gramming language [Basill & Turner 78). 1 The four programs tested were P 1) a text
processor, P,) a mathematical plotting routine, P,) a numeric abstract data type, and
P ;) a database malntalner. The programs are summarized In Flgure 4. There exlsts
some dlfferentiation In size, and the programs are a reallstic size for unlt testing. Each
of the subjects tested three programs, but a total of four programs was used across the
three phases of the study. The programs tested in each of the three phases of the study
appear In Flgure 5. The specificatlons for the programs appear In Appendix A, and

thelr source code appears in Appendlx B.

The first program Is a text formatting program, which also appeared in [Myers 78].
A verslon of this program, originally written by [Naur 89] using technlques of program
correctness proofs, was analyzed In (Goodenough & Gerhart 75]. The second program Is
a mathematical plotting routine. Thls program was written by R. W, Selby, based

roughly on a sample program In [Jensen & WIirth 74]. The third program Is a numerlc

! Simpl-T 1s a structured language that supports several string and flle handling
primitives, In addition to the usual control flow constructs avallable, for example, In
Pascal.

———y

..............................

.................

data abstractlon consisting of a set of list processing utilitles. This program was sub-
mitted for a class project by a member of an intermedlate level programming course at
the University of Maryland. [McMullln & Gannon 80]. The fourth program !s a maln-
talner for a database of bibllographlc references. This program was analyzed In [Hetzel
78], and was written by a systems programmer at the Unlversity of North Carollna com-

putation center.

Note that the source code for the programs contalns no comments. This creates a
worst-case situation for the code readers. In an eavironment where code contalned help-
ful comments, performance of code readers would llkely improve, especlally If the source
code contalned as comments the lntermedlate functlons of the program segments. In an

environment where the comments were at all suspect, they could then be lgnored.

3.2.3. Faults

The faults conialned In the programs tested represent a reasonable distribution of
faults that commonly occur in software [Welss & Baslll 85, Baslll & Perricone 84].
the faults in the database malntalner and the numeric abstract data type were made
during the actual development of the programs. The other two programs contaln a mix
of faults made by the original programmer and faults seeded In the code. The programs
contalned a total of 34 faults; the text formatter had nlne, the plotting routlne had six,

the abstract data type had seven, and the database malntalner had twelve.

3.2.3.1. Fault Origin

The faults 1n the text formatter were preserved from the article In which it ap-
peared [Myers 78], except for some of the more controverslal ones [Callllau & Rubln 79].
In the mathematlical plotter, faults made during program transiation were supplemented
by addltional representative faults. The faults In the abstract data type were the origi-
nal ones made by the program's author during the development of the program. The
faults In the database malntalner were recorded during the development of the program,
and then relnserted Into the program. The next sectlon describes a classification of the
different types of faults in the programs. Note that this investigation of the fault
detecting abllity of these technlques lnvolves only those types occurring !n the source

code. not other types such as those In the requirements or the specifications.

..............................

3.2.3.2. Fault Classification

b The faults In the programs are classifled according to two different abstract
classificatlon schemes [Baslill & Perricone 84]. One fault categorization method separates
- faults of omlsslon from faults of commlisslon. Faults of commission are those faults
b present as a result of an Incorrect segment of existing code. For example, the wrong ar-
Ithmetic operator Is used for a computation ln the right-hand-slde of an asslgnment
L- statement. Faults of omlsslon are those faults present as a result of a programmer'’s for-
E getting to Include some entity in a module. For example, a statement !s mlssing from

. the code that would assign the proper value to a variable.

A second fault categorizatlon scheme partitlons software faults lnto the slx classes
of 1) Initlalization, 2) computation, 3) control, 4) interface, 5) data, and 8) cosmetlc.
Improperly initiallzing a data structure constitutes an Initlailization fault. For example,
assigning a varlable the wrong value oa entry to a module. Ccmputatlon faults are
those that cause a calculatlon to evaluate the value for a varlable incorrectly. The
above example of a wrong arithmetic operator In the right-hand-slde of an assignment
statement would be a computation fault. A control fault causes the wrong control flow
path In a program to be taken for some Input. An Incorrect predicate 'n an [F-THEN-
ELSE statement would be a control fault. Interface faults result when a module uses
and makes assumptlons about entltles outside the module's local environment. Interface
faults would be, for example, passing an incorrect argument to a procedure, or assumlng
In a2 module that an array passed as an argument was fllled with blanks by the passing
routlne. A data fault are those that result from the incorrect use of a data structure.
For example, Incorrectly determining the Index for the last element In an array. Flnally,
cosmetlc faults are clerical mistakes when entering the program. A spelilng mistake in

an error message would be a cosmetlc fault.

Interpreting and classifying faults In software Is a difficult and Inexact task. The
categorizatlon process often requlres trylng to recreate the origlnal programmer's
misunderstandlng of the problem [Johnson, Draper & Soloway 83]. The above two fault
classificatlon schemes attempt to distingulish among different reasons that programmers

make faults In software development. They were applled to the faults In the programs

) e e e e e S e, P L et e e et Tt AL ."A-.‘.'-:‘-"‘-‘..'--‘..' ";\-.‘.“‘.."-."-.‘..‘.‘.‘.‘.'
i e, S PSSV S W, W TR YR L R W O Y S AL SRR TR LS ST AN S LY YR L UL P P L YR Y

I,

vl

MENENENE NS

R TN

in a consistent Interpretation; it Is certalnly possible that another analyst could have in-
terpreted them differently. The separate application of each of the two classification
schemes to the faults categorized them In a mutually exclusive and exhaustive manner.

Flgure 6 displays the distribution of faults In the programs according to these schemes.

3.2.3.3. Fault Description

The faults In the programs are described in Figure 7. There have been varlous
efforts to determine a precise counting scheme for ‘‘defects’ In software [Gloss-Soler 79,
IEEE 83]. According to the explanations given, a software ‘‘fault’ Is a specific manifes-
tatlon In the source code of a programmer ‘‘error.”” For example, due to a misconception
or document discrepancy, 2 programmer commlits an “error’” (In his/her head) that may
result in more than one ‘“fault’”” In a program. Using this Interpretation, software
“‘faults’” reflect the correctness, or lack thereof, In a program. The entlties examined In

this analysis are software faults.

3.3. Experimental Design

The experimental design applled for each of the three phases of the study was a
fractional factorial design [Cochran & Cox 50, Box, Hunter, & Hunter 78]. This experl-
mental design distingulshes among the testlng techniques, while allowlng for variation in
the abllity of the particular Indlvidual testing or In the program belng tested. Figure 8
displays the fractlonal factorial design appropriate for the third phase of the study.
Subject S, I1s In the advanced expertlse level, and he structurally tested program P |,
functlonally tested program P, and code read program P ;. Notlce that all of the sub-
Jects tested each of the three programs and used each of the three t;echnlques. or
course, no one tests a given program more than once. The deslgn appropriate for the
third phase 1s dilscussed In the following paragraphs, with the mlnor differences between
this deslgn and the ones applled In the first two phases belng discussed at the end of the
sectlon.

3.3.1. Independent and Dependent Variables

The experimental deslgn has the three independent varlables of testing technique,

software type, and level of expertise. For the design appearing ln Flgure 8, appropriat

LA I I A LA SR

-

AALTL APl

for the third phase of the study, the three maln effects have the following levels:
1) testing technique: code reading, functional testing, and structural testing

2) software type: (P) text processing, (P g) numeric abstract data type, and (P) data-
base malntalner

.’

3) level of expertise: advanced, intermediate, and junior
Every combinatlon of these levels occurs In the design. That s, programmers In all
three levels of expertise applled all three testing technlques on all programs. In addition
to these three maln effects, a factorial analysis of varlance (ANOVA) model supports the
analysis of interactlons among each of these maln effects. Thus, the Interaction effects
of testing technlque * software type, testing technique * expertise level, software type
expertise level, and the three-way Interaction of testing technique * software type * ex-
' pertise level are Included In the model. There are several dependent variables examined
. In the study, Including number of faults detected, percentage of faults detected, total
fault detectlon tlme, and fault detectlon rate. Observations from the on-line methods of
-:j functional and structural testing also had as dependent variables number of computer
runs, amount of cpu-time consumed, maximum statement coverage achleved, connect
tlme used, number of faults that were observable from the test data, percentage of
faults that were observable from the test data, and percentage of faults observable In

the from the test data that were actually observed by the tester.

- 3.3.2. Analysis of Variance Model

The three maln effects and all the two-way and three-way Interactions effects are
- called fixed effects In this factorlal analysis of variance model. The levels of these effects
glven above represent all levels of Interest In the investigation. For example, the effect
of testing technlque has as particular levels code reading, functional testing, and struc-
: tural testing; these particular testing techniques are the only ones under comparison ln
)’ this study. The effect of the particular subjects that participated ln this study requires

a little different interpretation. The subjects examined 1n the study were random sam-

. '.l (A (‘ '

ples of programmers from the large population of programmers at each of the levels of

) expertise. Thus, the effect of the subjects on the varlous dependent variables 1s a ran-

dom variable, and this effect therefore Is called a random effect. If the samples exam-

lned are truly representative of the population of subjects at each expertise level, the
Inferences from the analysls can then be generallzed across the whole population of sub-
Jects at each expertise level, not Just across the particular subjects In the sample chosen.
Since thls analysls of varlance model contalns both fixed and random eflects, 1t Is called
a mixed model. The actual ANOVA model for the deslgn appearing In Figure 8 Is given

below.
Tijkl = U+ a; + ,3] <+ i + 6},[+ aﬂ,'j + Y + ﬁ"hk + Q,Bﬂ,'jk + el'jkl
where

T,-J-,,, 1s the observed response from subject | of experience level k using testing
technlque 1 on program }

4 1s the overall mean response

a; 1s the maln eflect of testing technlque 1 (1 = 1,2,3)

B; 1s the maln effect of program J (J =1, 3, 4)

7 Is the maln effect of expertise level k (k = 1, 2, 3)

6y, s the random effect of subject 1 within expertise level k, a random variable (1
=12 .,32;k=1,2,3)

aB,-J- Is the Interactlon effect of testing technique ! with program j (1 =1, 2, 3;)
=1, 3, 4)

a7 1s the Interactlon effect of testlng technlque | with expertise level k (1 = 1,
2,3 k=1,23)

ﬁ'yj,, Is the Interaction effect of program J with expertise level k (J =1, 3, 4; k =
1, 2, 3) .

aﬁ’y,-jk s the Interaction effect of testing technique | with program] with experi-
ence level k 1=1,2,3;§=1,3,4;k =1, 2, 3)

€;j 13 the experimental error for each observatlon, a random variable

[ALSE AR

PR S R R

i

RN AP A e R A I A A A g A L A as o gl gty A" - g0,

The F tests of hypotheses on all the fixed effects mentloned above use the error
(residual) mean square In the denomlinator, except for the test of the expertise level
effect. The expected mean square for the expertise level effect contalns a component for
the actual variance of subjects within expertise level. In order to select the appropriate
error term for the denominator of the expertise level F' test, the mean square for the
effect of subjects nested within expertise level is chosen. The parameters for the random
effect of subjects within expertise level are assumed to be drawn from a normally dlstrl-
buted random process with mean zero and common variance. The experlmental error

terms are assumed to have mean zero and common variance.

The fractlonal factorial design applled in the first two phases of the analysls

differed slightly from the one presented above for the third phase.? In the third phase of
the study, programs P,, Py, and P 4 Wwere tested by sublects In three levels of expertlse.
In both phases one and two, there were only subjects from the levels of Intermediate
and Junlor expertise. In phase one, programs P, P4 and P, were tested. In phase
two, the programs tested were P, Py, and P, The only modifications necessary to the
above explanation for phases one and two are 1) ellminating the advanced expertise lev-
el, 2) changling the program P subscripts appropriately, and 3) leaving out the three way
Interaction term In phase two, because of the reduced number of subjects. In all three
of the phases, all subjects used each of the three technlques and tested each of the three
programs for that phase. Also, withln all three phases, all possible combinatlons of ex-

pertise level, testing technlques, and programs occurred.

The order of presentation of the testing techniques was randomized among the sub-
Jects In each level of expertise in each phase of the study. However, the Integrity of the
resuits would have suffered If each of the programs In a glven phase was tested at
different times by different sublects. Note that each of the testlng sesslons took place
on a different day because of the amount of effort required. If different progra.fns would

have been tested on different days, any discusslon about the programs among subjects

2 Although the data from all the phases can be analyzed together, the number of
empty cells resulting from not having all three experience levels and all four programs In
all phases limits the number of parameters that can be estimated and causes non-unique
Type IV partial sums of squares.

&
3

e
A

4

. !‘. /4 ./l IA /'.,'. ‘;

i'.".' ."-

between testing sesstons would have affected the future performance of others. There-
fore, all subjects In a phase tested the same program on the same day. The actual order
of program presentation was the order In which the programs are listed 1n the previous
paragraph.

3.4. Experimental Operation

Each of the three phases were broken Into five distinct pleces: tralning, three test-
Ing sesslons, and a follow-up session. All groups of subjects were exposed to a simllar
amount of tralalng on the testlng techniques before the study began. As mentloned ear-
ller, the Unlversity of Maryland subjects were enrolled In the *“Software Design and De-
velopment” course, and the NASA/CSC subjects were glven a four-hour tutorial. Back-
ground Information on the subjects was captured through a questionnalire. Elementary
exercises followed by a pretest covering all technlques were administered to all subjects
after the tralning and before the testlng sessions. Reasonable effort on the part of the
Unlversity of Maryland subjects was enforced by thelr belng graded on the work and by
their needing to use the techniques In a major class pro]ecc; Reasonable effort on the
part of the NASA/CSC subjects was certaln because of thelr desire for the study’s out-
come to !mprove thelr software testlng environment. All subjlects groups were Judged
highly motilvated during the study. The subjects were all famillar with the edltors, ter-

mlnals, machlnes, and the programs’ implementation language.

The indlviduals were requested to use the three testing techniques to the best of
their abllity. Every subject participated in all three testing sessions of his/her phase,
using all technlques but each on a separate program. The indlviduals using code read-
ing were each glven the speclficatlon for the program and its source code. They were
then asked to apply the methods of code reading by stepwlise abstraction to detect
dlscrepancles between the program’s abstracted function and the specification. The
functlonal testers were each glven a specification and the abllity to execute the program.
They were asked to perform equlvalence partitlonlng and boundary value analysis to
select a set of test data for the program. Then they executed the program on this col-

lection of test data, and inconsistencles between what the program actually performed

and what they though the specificatlon sald it should perform were noted. The struc-

DR SRRSOV BN C R B A e St b Al AL AR A A AR Al Gl Al g A A S N 9 "Rl ghe atraty - e Bhe Dun e g tre 2o e v B 3 adb o B R X 3 0

tural testers were glven the source code for the program, the ablllity to execute it, and a
description of the Input format for the program. The structural testers were asked to
examine the source and generate a set of test cases that cumulatively execute 100% of
the program's statements. When the sublects were applylng an on-line technlque, they
generated and executed their own test data; no test data sets were provided. The pro-
grams were Invoked through a test driver that supported the use the of multiple Input
data sets. This test driver, unbeknown to the subjects, dralned off the input cases sub-
mlitted to the program for the experimenter’'s later analysis; the programs could only be

accessed through a test driver.

A structural coverage tool calculated the actual statement coverage of the test set
and which statements were left unexecuted for the structural testers. After the struc-
tural testers generated a collectlon of test data that met (or almost met) the 100% cov-
erage criterla, no further executlon of the program or reference to the source code was
allowed. They retalned the program's output from the test cases they had gener.ated.
These testers were then provided with the program's speclfication. Now that they knew
what the program was Intended to do, they were asked to contrast the program's
specification with the behavior of the program on the test data they derived. This
scenario for the structural testers was necessary so that ‘‘observed’’ faults could be com-

pared.

At the end of each of the testing sessions, the subjects were asked to give a reason-
able estimate of the amount of time spent detecting faults with a glven testlng tech-
nicue. The University of Maryland subjects were assured that thls had nothing to with
the grading of the work. There seemed t0 be little Incentlve for the sublects In any of
the groups not to be truthful. At the completlon of each testing sesslon, the
NASA/CSC sublects were also asked what percentage of the faults In the program that
they thought were uncovered. After all three testlng sesslons In a glven phase were
completed, the subjects were requested to critique and evaluate the three testing tech-
nlques regarding their understandablllty, naturalness, and effectlveness. The Unlversity
of Maryland subjects submitted a written critlque, while a two hour debriefing forum

was conducted for the NASA/CSC individuals. In addition to obtalning the Impressions

of the individuals, these follow-up procedures gave an understanding of how well the

subjects were comprehending and applying the methods. These flnal sesslons also
afforded the participants an opportunity to comment on any particular problems they
had with the technlques or In applylng them to the glven programs.

4. Data Analysis

The analysls of the data collected from the varlous phases of the experiment Is

presented according to the goal and question framework dlscussed earller.

4.1. Fault Detection Effectiveness

The first goal area addresses the fault detection effectlveness of each of the tech-
niques. Figure 9 presents a summary of the measures that were examined to pursue this
goal area. A brief description of each measure IS as follows — (*) means only relevant for
on-line testlng. a) # Faults detected — the number of faults detected by a subject ap-
plylng a glven testing technlque on a given program. b) % Faults detected ~ the per-
centage of a program'’s faults that a subject detected by applylng a testing technlique to
the program. c) # Faults observable (*) — the number of fauits that were observable
from the program's behavior glven the input data submitted. d) % Faults observable
(x) - the percentage of a program's faults that were observable from the program's
behavior given the Input data submitted. e) % Detected/observable (*) - the percen-
tage of faults observable from the program’s behavior on the glven input set that were
actually observed by a subject. f) %5 Faults felt found - a subjlect’s estimate of the per-
centage of a program's faults that he/she thought were detected by his/her testing. g) .
Maximum statement coverage (x) — the maximum percentage of a program'’s statements

that were executed In a set of test cases.

4.1.1. Data Distributions

The actual distribution of the number of faults observed by the sublects appears In
Flgure 10, broken down by phase. From Figures © and 10, the large variation in perfor-
mance among the subjects I3 clearly seen. The mean number of faults detected by the
subjects Is displayed In Flgure 11, broken down by technlque, program, expertise level,
and phase.

14

...........

Loy -
...........

P .

4.1.2. Number of .Faults Detected

The first question under thls goal area asks which of the testing techniques detected
the most faults 1o the programs. The overall F-test of the techniques detecting an equal
number of faults In the programs Is rejected in the first and third phases of the study
(a<.024 and a<.0001, respectively; not rejected In phase two, @>.05). Recall that the
phase three data was collected from 32 NASA/CSC subjects, and the phase one data
was from 29 Unlversity of Maryland sublects. WIth the phase three data, the contrast
of ‘‘readlng - 0.5 = (functional + structural)’’ estimates that the technlque of code read-

Ing by stepwise abstraction detected 1.24 more faults per program than did elther of the

other technlques (a@<.0001, c.. 0.73 - 1.75).3 Note that code reading performed well
even though the professional subjects’ primary experlence was with functlonal testing.
Also with the phase three data, the contrast of “functional - structural’” estimates that
the technique of functlonal testing detected 1.11 more faults per program than did
structural testing (a<.0007, c.. 0.52 — 1.70). In the phase one data, the contrast of
*0.5 * (reading + functlonal) — structural’' estimates that the technique of structural
testing detected 1.00 fault less per program than dld elther readlng or functional testing
(x<.0085, c.i. 0.31 — 1.69). In the phase one data, the contrast of *‘reading - function-
:: al”” was not statlstlcally different from zero (a>.05). The poor performance of structur-

al testlng across the phases suggests the lnadequacy of ‘using statement coverage criteria.

The above palrs of contrasts were chosen because they are llnearly Independent.

4.1.3. Percentage of Faults Detected

Slnce the programs tested each had a different number of faults, a question ln the
earller goal/question framework asks which technlque detected the greatest percentage
of faults In the programs. The order of performance of the techniques Is the same as

'-. above when the percentage of the programs’' faults detected are compared. The overall
F-tests for phases one and three were rejected as before (a«<.037 and a<.0001 respec-
tively; not rejected In phase two, a>.05). Applyilng the same contrasts as above: a) In

phase three, reading det-cted 16.0% more faults per program than did the other tech-

3 The probabiy of Type I error Is reported, the probabllity of erroneously rejectlng
the null hypothesis. The abbreviation *'c.l.”” stands for 85% confldence Interval.

15

nlques (a<.0001, c.l. 9.9 — 22.1), and functional detected 11.2% more faults than did
structural (a<.003, c.l. 4.1 - 18.3); b) In phase one, structural detected 13.2% fewer of

a program's faults than did the other methods (a<.011, c.i. 3.5 — 22.9), and reading and
functional were not statistically different as before.

4.1.4. Dependence on Software Type

Another question !n this goal area queries whether the number or percentage of
faults detected depends on the program. being tested. The overall F-test that the
number of faults detected is not program dependent i3 rejected only In the phase three
data (x<.0001). Applying Tukey’'s multiple comparison on the phase three data reveals
that the most faults were detected In the abstract data type, the second most In the
text formatter, and the least number of faults were found In the database malntalner
(simuitaneous @< .05). When the percentage of faults found In a program Is considered,
however, the overall F-tests for the three phases are all rejected (a<.027, a<.01, and
a < .0001 in respectlve order). Tukey's multiple comparison ylelds the following order-
Ings on the programs (all simultaneous a<.05). In the phase one data, the ordering was
(data type == plotter) > text formatter; that s, a higher percentage of faults were
detected in elther the abstract data type or the plotter than were found In the text for-
matter; there was no difference between the abstract data type and the plotter In the
percentage found. In the phase two data, the ordering of percentage of faults detected
was plotter > (text formatter =~ database malntalner). In the phase three data, the
ordering of percentage of faults found In the programs was the same as the number of
faults found, abstract data type > text formatter > database malntalner. Summariz-
Ing the effect of the type of software on the percentage of faults observed: 1) the pro-
grams with the highest percentage of their fa:ulr.s detected were the abstract data type
and the mathematlcal plotter, the percentage detected between these two was not sta-
tistically different; 2) the programs with the lowest percentage of thelr faults detected
were the text formatter and the database malntalner; the percentage detected between
these two was not statistically different In the phase two data, but a higher percentage

of faults 1n the text formatter was detected in the phase three data.

168

4.1.5. Observable vs. Observed Faults

One evaluation criteria of the success of a software testing sesslon 1s the number of
faults detected. An evaluation criterlia of the particular test data generated, however, Is
the abllity of the test data to reveal faults In the program. A test data set’s abllity to
uncover faults Iln a program can be measured by the number or percentage of a
program's faults that are made observable from executlon on that Input. Distingulshing
the faults observable In a program from the faults actually observed by a tester
highlights the differences in the activitles of test data generation and program behavior
examination. As shown in Filgure 8, the average number of the programs’ faults observ-
able was 68.0% when Individuals were either functional testing or structurally testing.
Of course, with a nonexecutlon-based technique such as code reading, 100% of the faults
are observable. Test data generated by subjlects using the technlque of functional test-
Ing resulted in 1.4 more observable faults (¢ <.0002, c.l. 0.79 — 2.01) than did the use of
structural testing ln phase one of the study; the percentage difference of functional over
structural was estlmated at 20.0% (a<.0002, c.l. 11.2 — 28.8). The techrlques did not
differ 1n these two measures {n the third phase of the study. However, Just considering
the faults that were observable from the submitted test data, functlonal testers detected
18.5% more of these observable faults than did structural testers in the phase three data
(x<.0018, c.l. 8.9 — 28.1); they did not differ In the phase oneA data. Note that all faults
In the programs could be observed In the programs’ output given the proper input data.
When using the on-ilne technlques of functional and structural testing, subjects detected
70.3% of the faults observable In the program's output. In order to conduct a successful

testing sesslon, faults in a prozram must be both revealed and subsequently observed.

4.1.8. Dependence on Program Coverage

Another measure of the abllity of a test set to reveal a program's faults Is the per-
centage of a program's statements that are executed by the test set. The average max-
Imum statement coverage achleved by the functlonal and structural testers was 97.0%.
The maximum statement coverage from the submlitted test data was not statlstically
different between the functional and structural testers (a>.05). Also, there was no

correlation between maximum statement coverage achleved and elther number or per-

17

R S A S A A A r I AL S SCRATRACE A AL AL Sul b et Pad Sul Sk And Mt i AdCR R AR S SN AL O Y T

centage of faults found (a>.05).

4.1.7. Dependence on Programmer Expertise

A final question In this goal area concerns the contribution of programmer expertise
to fault detectlon eflectiveness. In the phase three data from the NASA/CSC profes-
slonal environment, subjects of advanced expertise detected more faults than did efther
the sublects of Intermedlate or junlor expertise (2x<.05). When the percentage of faults
detected 1s compared, however, the advanced subjects performed better than the junlor
subjects (x<.05), but were not statistically different from the Intermedlate subjects
(a>.05). The Intermedlate and Junlor subjects were not statistically different ln any of
the three phases of the study In terms of number or percentage faults observed. When
several subject background attributes were correlated with the number of faults found,
total years of professlonal experlence had a minor relationship (Pearson R = .22,
a<.05). Correspondence of performance with background aspects was examlned across
all observa.tlon;z. and within each of the phases, Including previous academlc perfor-
mance for the Unlversity of Maryland subjects. Other than the above, no relatlionships

were found.

4.1.8. Accuracy of Self-Estimates

Recall that the NASA/CSC subjects In the phase three data estimated, at the com-
pletion of a testing sesslon, the percentage of a program’s faults they thought they had
uncovered. This estimation of the number of faults uncovered correlated reasonably
well with the actual percentage of faults detected (R == .57, a<.0001). Investigating
further, indlviduals using the different techniques were able to glve better estlmates:
code readers gave the best estimates (R = .79, a<.0001), structural testers gave the
second best estimates (R = .57, @<.0007), and functional testers gave the worst estl-
mates (no correlatlon, a>.05). This last observatlon suggests that the code readers

were more certaln of the effectiveness they had In reveallng faults in the programs.

4.1.9. Dependence on Interactions

There were few significant Interactions between the maln effects of testlng tech-

nique, program, and expertise level. In the phase two data, there was an interaction

18

2t N aBE e o e ute simt ik st et ool ol S

between testing technique and program In both the number and percentage of faults
found (a<.0013, a<.0014 respectively). The effectlveness of code reading increased on
the text formatter. In the phase three data, there was a slight three-way Interaction
between testing technlique, program, and expertise level for both the number and per-

centage of faults found (a<.05, a<.04 respectlvely).

4.1.10. Summary of Fault Detection Effectiveness

Summarizing the major results of the comparison of fault detection effectiveness: 1)
In the phase three data, code readlng detected a greater number and percentage of
faults than the other methods, with functional detecting more than structural; 2) In the
phase one data, code reading and functional were equally effectlve, while structural was
lnferior to both ~ there were no differences among the three techniques In phase two; 3)
the number of faults observed depends on the type of software: the most faults were
detected In the abstract data type and the mathematical plotter, the second most ln the
text formatter, and (In the case of the phase three data) the least were found In the da-
tabase malntalner; 4) functionally generated test data revealed more observable faults
than did structurally generated test data \n phase one, but not In phase three; 5) sub-
Jects of lntermedlate and Junlor expertise were equally effective In detecting faults, while
advanced subjects found a greater number of faults than did elther group; and 8) seif-
estimates of fauits detected were most accurate from subjlects applylng code reading, fol-
lowed by those doing structural testing, with estimates from persons functionally testing

having no relationship.

4.2, Fault Detection Cost

The second goal area examlnes the fault detectlon cost of each of the technlques.

Flgure 12 presents a summary of the measures that were examlned to Investigate thls

goal area. A brief description of each measure Is as follows — (*) means only relevant for
on-line testing. a) # Faults / hour - the number of faults detected by a subject 2pply-
Ing a glven technique normallzed by the effort 1n hours required, called the fault detec-
tlon rate. b) Detectlon time - the total number of hours that a subject spent In testing
a program using a technique. c¢) Cpu-tlme (x) — the cpu-time In seconds used during the

testlng sesston. d) Normallzed cpu-time (*) - the cpu-time In seconds used during the

19

testlng sesslon, normallzed by a factor for machine speed.* e) Connect time () — the
number of minutes that a Individual spent on-llne while testlng a program. f) # Pro-
gram runs (*) — the number of executions of the program test driver; note that the
driver supported multiple sets of Input data. All of the on-llne statistlcs were monltored

by the operatlng systems of the machlnes.

4.2.1. Data Distributions

The actual distribution of the fault detection rates for the subjects appears In Flg-
ure 13, broken down by phase. Once agaln, note the many-to-one differential In subject
performance. Flgure 14 displays the mean fault detectlon rate for the subjects, broken

down by technlque, program, expertise level, and phase.

4.2.2. Fault Detection Rate and Total Time

The first question In thls goal area asks which testing technlque had the hlghest
fault detectlon rate. The overall F-test of the technlques’ having the same fault detec-
tlon rate was rejected In the phase three data (ax<.0014), but not In the other two
phases (a>.05). As before, the two contrasts of *‘readlng ~ 0.5 * (functional + structur-

al)” and ‘‘functlonal — structural’” were examlned to detect differences among the tech-

nlques. The technique of code readlng was estimated at detectlng 1.49 more faults per
hour than did the other technlques In the phase three data (a<.0003, c.l. 0.75 - 2.23).
The technlques of functional and structural testlng were not statlistically different
(a>.05). Comparing the total tlme spent In fault detectlon, the technlques were not
statistically different In the phase two and three data; the overall F-test for the phase
one data was relected (@< .013). In the phase one data, structural testers spent an es-
timated 1.08 hours less testing than did the other technlques (< .004, c.l. 0.38 - 1.78),
whlle code readers were not statlstically different from functlonal testers. Recall that In

phase one, the structural testers observed both a lower number and percentage of the

programs’ faults than did the other techniques.

* In the phase three data, testing was done on both a VAX 11/780 and an BM
1341. As suggested by benchmark comparisons [Church 84], the VAX cpu-times were
divided by 1.8 and the IBM cpu-times were divided by 0.9.

...
..

Al " IR Al aad e B A AR S v A< AL BUL AR a0e ahd ote e

4.2.3. Dependence on Software Type

Another question in thls area focuses on how fault detectlon rate depends on soft-
ware type. The overall F-test that the detection rate 1s the same for the programs Is re-
Jected in the phase one and phase three data (a<.01 and a<.0001 respectively); the
detectlon rate among the programs was not statistically different in phase two. Apply-
ing Tukey's multiple comparisons on the phase one data filnds that the fault detection
rate was greater on the abstract data type than on the plotter, whlle there was no
difference elther between the abstract data type and the text formatter or between the
text formatter and the plotter (simultaneous a<<.05). In the phase three data, the fault

detectlon rate was higher In the abstract data type than 1t was for the text formatter

and the database malntalner, with the text formatter and the database malntalner not
belng statlstically different (slmultaneous a<.05). The overall effort spent In fault
detection was dlfferent among the programs !n phases one and three (a<.012 and
a < .0001 respectively), while there was no difference Iln phase two. In phase one, more
effort was spent testing the plotter than the abstract data type, whlle there was no sta-
tistical difference elther between the plotter and the text formatter or between the text
formatter and the abstract data type (simuitaneous a<.05). In phase three, more time
was spent testing the database malintalner than was spent on elther the text formatter
or on the abstract data type, with the text formatter not differing from the abstract
data type (slmultaneous a<.05). Summarizing the dependence of fault detectlon cost
on software type, 1) the abstract data type had a higher detectlon rate and less total
detection effort than dld elther the plotter or the database malntalner, the latter two
were not different ln elther detectlon rate or total detection time; 2) the text formatter
and the plotter did not differ in fault detectlon rate or total detectlon effort; 3) the text
formatter and the database malntalner did not differ I1n fault detection rate overall and
dld not differ In total detectlon effort ln phase two, but the database malntalner had a
higher total detectlon effort In phase three; 4) the text formatter and the abstract data
type dld not differ 1n total detection effort overall and did not differ In fault detectlon

rate 1 phase one, but the absfract data type had a higher detectlon rate In phase three.

o s

4.2.4. Computer Costs

In additlon to the eflort spent by individuals 1n software testing, on-lilne methods
Incur machlne costs. The machine cost measures of ¢pu-time, connect time, and the
number of runs were compared across the on-llne techniques of functional and structural
testing In phase three of the study. A nonexecutlon-based technlque such as code read-
Ing, of course, lncurs no machine time costs. When the machlne speeds are normalized
(see measure deflnitions above), the technique of functional testing used 26.0 more
seconds of cpu-time than did the technlque of structural testlng (a<<.018, c.l. 7.0 ~
45.0). The estimate of the dlfference Is 29.8 seconds when the cpu-times are not normal-
1zed (¢<.012, c¢.l. 9.0 - 50.2). Individuals using functional testlng used 28.4 more
minutes of connect time than did those using structural testing (a<.004, c.. 11.7 -
45.1). The number of computer runs of a program's test drlver was not different
between the two technlques (a@>.05). These results suggest that indlviduals using func-
tional testing spent more time on-line and used more ¢pu-time per computer run than

did those structurally testing.

4.2.5. Dependence on Programmer Expertise

The relation of programmer expertise to cost of fault detection Is another question
In thls goal sectlon. The expertise level of the subjects had no relatton to the fault
detectlon rate In phases two and three (a>.05 for both F-tests). Recall that phase
three of the study used 32 professional subjects with all three levels of computer sclence
expertise. In phase one, however, the Intermedlate subjects detected faults at a faster
rate than did the junlor subjects (@ <.005). The total effort spent in fault detection was
not dlfferent among the expertise levels In any of the phases (a>.05 for all three F-
tests). When all 74 subjects are considered, years of professlonal experience correlates
positively with fault detection rate (R == .41, «<.0002) and correlates slightly negatlve-
ly with total detectlon time (R == -.25, a<<.03). These last two observatlons suggest
that persons with more years of professional experlence detected the faults faster and
spent less total time dolng so. Several other subject background measures showed no
relatlonship with fault detectlon rate or total detection time (a<.05). Background

measures were examlined across all subjects and within the groups of NASA/CSC sub-

..._'-,-.-_-_._-»..q'._‘-

3 ... ‘. 4..l.-‘I.. '.. . - . - - - - -- '
;_iiﬂ',\A‘!‘.‘ .")5‘)“;"_.-\.'2 N W A‘E_"\‘h.! AL

DR I

.............................

- S

At by TN, A,

LR

Jects and Unliversity of Maryland subjects.

4.2.8. Dependence on Interactions

There were few signlficant Interactlons between the maln effects of testlng tech-
nlque, program, and expertise level. There was an Interaction between testing technlique
and software type In terms of fault detection rate and total detection cost for the phase
three data (a@<.003 and a<.007 respectively). Subjects using code reading on the
abstract data type had an Increased fauit detection rate and a decreased total detection

time.

4.2.7. Relationships Between Fault Detection Effectiveness and Cost

There were several correlatlons between fault detectlon cost measures and perfor-
mance measures. Fault detectlon rate correlated overall with number of faults detected
(R = .48, <.0001), percentage of faults found (R = .48, a<.0001), and total detec-
tlon time (R = -.53, @ <.0001), but not with normallzed cpu-time, raw cpu-time, con-
nect time, or number of computer runs (a>.05). Total detection time correlated with
normalized cpu-time (R = .38, <.04) and raw cpu-time (R = .37, @ <.04), but not
with connect time, number of runs, number of faults detected, or percentage of faults
detected. The number of faults detec.ed In the programs correlated with the amount of
machlne resources used: normallzed cpu-time (R = .47, a<.007), raw cpu-time (R =
.52, a<.002), and connect time (R = .49, ®<.003), but not with the number of com-
puter runs (a>.05). The correlations for percentage of faults detected with machine
resources used were simliar. Although most of these correlations are minor, they suggest
that 1) the higher the fault detection rate, the more faults found and the less time spent
In fault detectlon; 2) fault detectlon rate had no relatlonship with use of machine
resources; 3) spending more time In detecting faults had nc relatlonship with the

amount of faults detected; and 4) the more cpu-time and connect tlme used, the more

faults found.

4.2.8. Summary of Fault Detection Cost

Summarizing the major resuits of the comparison of fault detectlon cost: 1) In the

phase three data, code readlng had a higher fault detectlon rate than the other methods.

with no difference between functlonal testing and structural testing; 2) in the phase one
and two data, the three techniques were not different In fault detectlon rate; 3) in the
phase two and three data, total detectlon effort was not different among the technlques,
but In phase one less effort was spent for structural testing than for the other tech-
nlques, while reading and functional were not different; 4) fault detection rate and total
effort In detectlon depended on the type of software: the abstract data type had the
highest detectlon rate and lowest total detection effort, the plotter and the database
malntalner had the lowest detection rate and the highest total detection effort, and the
text formatter was somewhere In between depending on the phase; 5) functional testing
used more cpu-tlme and connect time than did structural testing, but they were not
different 1n the number of runs; 6) In phases two and three, subjects across expertise lev-
els were not dlfferent 1n fault detectlon rate or total detection time, In phase one Inter-
medlate subjects had a hligher detection rate; and 7) there was a moderate correlation

between fault detectlon rate and years of professional experience across all subjects.

4.3. Characterization of Faults Detected

The third goal area focuses on determlning what classes of faults are detected by
the different techniques. In the earller sectlon on the faults In the software, the faults
were characterized by two different classificatlon schemes: omisslon or commlssion, and
Initlallzation, control, data, computation, Interface, or cosmetic. The faults detected
across all three study phases are broken down by the two fault classificatlon schemes In
Figure 15. The eontrles 1n the figure are the average percentage (with standard devia-
tlons) of faults In a given class observed when a f)anlcular technlque was belng used.
Note that when a subject tested a program that had no faults in a glven class, he/she

was excluded from the calculation of thls average.

4.3.1. Omission vs. Commission Classification

When the faults are partitioned accordlng to the omisslon/commission scheme,
there 1s a distinctlon among the technlques. Both code readers and functlonal testers
observed more omisslon faults than dld structural testers (a<.001), with code readers
and functlonal testers not being different (a>.05). Slnce a fault of omlisslon occurs as a

result of some segment of code being left out, you would not expect structurally generat-

24

MDA N e B e S8 P iy Yy DALt GL 90, Lo P Aa i RN Sivie "B e il e S e B 2 g SRR ISR S A S A A G i Wb Ot St et M) o VT Vg e

e a, e &l

ed test data to find such faults. In fact, 449 of the subjects applylng structural testing
found zero faults of omission when testlng a program. A distribution of the faults ob-

. served according to this classification scheme appears in Figure 186.

A 4.3.2. Six-Part Fault Classification

When the faults are divided according to the second fault classification scheme,
several differences are apparent. Both code readlng and functional testing found more
Initialization faults than did structural testing (a<.05), with code reading and function-
' al testing not belng different (a@>.05). Code reading detected more interface faults than
dld elther of the other methods (a<.01), with no difference between functional and
structural testing (a>.05). This suggests that the code readlng process of abstracting
:; and composing program functions across modules must be an effective technique for
finding Interface faults. Functional testing detected more control faults than dld elther
of the other methods (a<.01), with code reading and structural testlng not belng
different (a>.05). Recall that the structural test data generatlon criteria examlned Is
‘ based on determining the executlon paths In a program and deriving test data that exe-
cute 100% of the program's statements. One would expect that more control path’
fauits would be found by such a technique. However, structural testlng did not do as
well as functional testing In this fault class. The technique of code reading found more
computatlon faults than did structural testing (a<.05), with functional testing not be-
Ing different from elther of the other two methods (a>-.05). The three techniques were
not statistically different in the‘ percentage of faults they detected In elther the data or
cosmetlc fault classes {(@>.05 for both). A distribution of the fauits observed according

to thls classification scheme appears In Figure 17.

4.3.3. Observable Fault Classification

Figure 18 displays the average percentage (with standard devlations) of faults from

each class that were observable from the test data submitted, yet were not reported by

the tester.> The two on-line techniques of functlonal and structural testing were not

5 The standard deviatlons presented In the flgure are high because of the several in-
stances In which all observable faults were reported.

Bt N]

25

PN

AR AR A AR

f A N

different In any of the faults classes (a@>.05). Note that there was only one fault in the
cosmetlc class.

4.3.4. Summary of Characterization of Faults Detected

Summarizing the major results of the comparison of classes of faults detected: 1)
code reading and functional testing both detected more omission faults and Initlallzation
faults than did structural testing; 2) code readlng detected more Interface faults than
did the other methods; 3) functional testing detected more control faults than did the
other methods; 4) code reading detected more computation faults than did structural
testing; and 5) the on-llne technlques of functional and structural testing were not

different In any classe; of faults observable but not reported.

5. Conclusions

This study compares the strategles of code readlng by stepwise abstraction, func-
tlonal testing using equivalence class partitioning and boundary value analysls, and
structural testing using 100% statement coverage. The study evaluates the technlques
across three data sets In three different aspects of software testing: fault detect,lon
effectlveness, fault detectlon cost, and classes of faults detected. Each of the three test-
Ing technlques showed merit in this evaluation. The lnvestigation is Intended to com-
pare the different testing strategles in representative testing situatlons, using program-
mers with a wide range of experlence, different software types, and common software

faults.

The maljor results of thls study are 1) with the professlonal programmers, code
reading detected more software faults and had a higher fault detectlon rate than did
functional or structural testing, whille functional testlng detected more faults than did
structural testing, but functlonal and structural testing were not different ln fault detec-
tlon rate; 2) In one UoM subject group, code reading and functlonal testing were not
different 1n faults found, but were both superior to structural testing, while In the other
UoM subject group there was no difference among the technlques; 3) with the UoM sub-
Jects, the three technlques were not different In fault detectlon rate; 4) number of faults

observed, fault detection rate, and total effort In detection depended on the type of soft~

ware tested; 5) code readlng detected more Interface faults than dld the other methods;

— —

8) functional testing detected more control fauits than did the other methods; and 7)
when asked to estimate the percentage of faults detected, code readers gave the most

accurate estimates whille functional testers gave the least accurate estimates.

The results suggest that code reading by stepwise abstraction (a nonexecution-
based method) Is at least as effective as on-llne functlonal and structural testing in
terms of number and cost of faults observed. They also suggest the Inadequacy of using
100% statement coverage criteria for structural testing. Note that the professional pro-
grammers examlned preferred the use of functional testing because they felt 1t was the

most effective technlque; thelr Intultion, however, turned out to be Incorrect.

In comparing the resuits to related studles, there are mixed conclusions. A proto-
type analysis done at the Unlversity of Maryland in the Fall of 1981 [Hwang 81] sup-
ported the bellef that code readlng by stepwlse abstraction does as well as the
computer-based methods, with each strategy having lts own advantages. In the Myers
experiment (Myers 78], the three techniques compared (functional testing, 3-person code
reviews, control group) were equally effective. He also calculatéd that code reviews were
less cost-effectlve than the computer-based testing approaches. The first observation Is
supported In one study phase here, but the other observation Is not. A study conducted
by Hetzel [Hetzel 78] compared functional testlng, code reading, and ‘“‘selective’ testing
(a composite of functlonal, structural, and reading technlques). He observed that funec-
tlonal and ‘‘selective’ testing were equally effectlve, with code reading belng Inferior.
As noted earller, this 1s not supported by thls analysls. The study described In this
analysls examined the technlque of code reading by stepwlse abstraction, while both the
Myers and Hetzel studies examined alternate approaches to off-lilne (nonexecutlon-based)

review /reading.

A few remarks are appropriate about the comparison of the cost-effectlveness and
phase-avallabllity of these testing technlques. When examlining the effort assoclated
with a technlque, both fault detectlon and fault Isolatlon costs should be compared.
The code readers have both detected and Isolated a fault; they located 1t ln the source
code. Thus, the readlng process condenses fault detectlon and lsolatlon lnto one activi-

ty. Functlonal and structural testers have only detected a fault; they need to delve into

the source code and expena additional effort In order to Isolate the defect. Also, a

ponexecution-based reading process can be applied to any document produced during
the development process (e.g., high-level deslgn document, low-level design document,
source code document). While functlonal and structural execution-based technlques
may only be applied to documents that are executable (e.g., source code), which are usu-

ally avallable)~ter In the development process.

Investigatlons related to this work include studles of fault classificatlon [Welss &
Baslll 85, Johnson, Draper & Soloway 83, Ostrand & Weyuker 83, Baslll & Perricone 84]
and Cleanroom software development [Selby, Basill & Baker 85]. In the Cleanroom soft-
ware deveiopment approach, techniques such as code reading are used in the develop-
ment of software completely off-llne (l.e., without program execution). In the above
study, systems developed using Cleanroom met system requirements more completely
and had a higher percentage of successful operatlonal test cases than dld systems

developed with a more tradlitlonal approach.

The empirical study presented Is Intended to advance the understanding of how
various software testing strategles contribute to the software development process and
to one another. The results glven were calculated from a set of Indlviduals applying the
three technlques to unlt-sized programs - the direct extrapolation of the findings to oth-
er testing eqvlronmencs Is not Implled. However, valuable lnsights lnto software testing
have been galped. Further work applylng these and other results to devise effective

testing environments s underway.

6. Acknowledgement

The authors are grateful to the subjects from Computer Sclences Corporation,
NASA Goddard. and the Unlversity of Maryland for thelr enthuslastlc participation ln
the study.

28

............

7. Appendices

7.1. Appendix A. The Specifications for the Programs
Program 1

Glven an lnput text of up to 80 characters consisting of words separated by blanks
or new-llne characters, the program formats 1t Into a line-by-line form such that 1) each
output llne has a maximum of 30 characters, 2) a word !n the Input text is placed on a
single output line, and 3) each output line is fllled with as many words as possible.

The Input text Is a stream of characters, where the characters are categorized as el-
ther break or nonbreak characters. A break character Is a blank, a new-llne character
(&), or an end-of-text character (/). New-llne characters have no speclal significance;
they are treated as blanks by the program. The characters & and / should not appear
in the output.

A word is defilned as a nonempty sequence of nonbreak characters. A break 1s a se-
quence of one or more break characters and 1s reduced to a single blank character or
start of a new line In the output.

When the program Is Invoked, the user types the lnput llne, followed by a / (end-
of-text) and a carrlage return. The program then echos the text lnput and formats It on
the termlnal.

If the Input text contalns a word that Is too long to it on a single output llne, an
error message Is typed and the program terminates. If the end-of-text character 1s mlss-
ing, an error message 1s issued and the program awalts the Input of properly terminated
Ilne of text.

Program 2

Glven ordered palrs (X,y) of elther positive or negative Integers as input, the pro-
gram plots them on a grid with a horizontal x-axis and a vertlcal y-axls which are ap-
propriately labeled. A plotted polnt on the grid should appear as an asterisk ().

The vertical and horizontal scallng is handled as follows. If the maximmum absolute
value of any y-value is less than or equal to twenty (20), the scale for vertical spacing
will be one line per integral unit (e.g., the polnt (3,8) should be plotted on the sixth line;
two llnes above the polnt (3,4)). Note that the origin (point (0,0)) would correspond to
an asterisk at the the lntersection of the axes (the x-axis Is referred to as the Oth line).
If the maximum absolute value of any x-value is less than or equal to thirty (30), the
scale for horizontal spacing will be one space per Integral unit (e.g., the polnt (4,5)
should be plotted four spaces to the right of the y-axls; two spaces to the right of (2,5)).
However, If the maxlmum absolute value of any y-value 1s greater than twenty (20), the
scale for vertical spacing will be one llne per every (max abs of yval)/20 rounded-up.
(e.g.. If the maximum absolute value of any y-value to be plotted !s 88, the vertlcal ilne
spacing wlll be a llne for every four (4) Integral units. In such a data set, polnts with
y-values greater than or equal to elght and less than twelve will show up as asterisks In
the second llne, polnts with y-values greater than or equal to twelve and less than six-

- - -
PRt e JReata SeAe 4

I SUIALRACR A A NS D S N Wl e Sk Ao A VAR S S e i A A e e

teen will show up as asterisks In the third llne, etc. Continulng the example, the polnt
(3,15) should be plotted on the third Iline; two llnes above the point (3,5).) Horizontal
scaling 1s handled analogously.

If two or more of the polnts to be plotted would show up as the same asterisk In
the grid (itke the polnts (9,13) and (9,15) In the above example), a number 2’ (or what-
ever number Is appropriate) should be printed Instead of the asterisk. Polnts whose as-
terisks will lle on a axls or grid marker should show up In place of the marker.

Program 8

A list 1s deflned to be an ordered collection of Integer elements which may have ele-
ments annexed and deleted at elther end, but not in the middle. The operations that
need to be avallable are ADDFIRST, ADDLAST, DELETEFIRST, DELETELAST,
FIRST, ISEMPTY, LISTLENGTH, REVERSE, and NEWLIST. Each operation Is
described In detail below. The lists are to contaln up to a maximum of five (5) ele-
ments. If an element Is added to the front of a *‘full”” list (one contalning five elements
already), the element at the back of the list Is to be discarded. Elements to be added to
the back of a full list are discarded. Requests to delete elements from empty llsts result
In an empty list, and requests for the first element of an empty list results in zero (0) be-
Ing returned. The detalled operation descriptions are as below:

ADDFIRST(LIST L, INTEGER I)

Returns the list L with I as its first element followed by all the elements of L. If L

is “'full” to begin with, L’s last element is lost.
ADDLAST(LIST L, INTEGER I)

Returns the list with all of the elements of L followed by I. If L is full to begin

with, L is returned (l.e., I Is ignored).
DELETEFIRST(LIST L)

Returns the list contalnlng all but the first element of L. If L 1s empty, then an

empty llst Is returned.
DELETELAST(LIST L)

Returns the list contalning all but the last element of L. If L Is empty, then an

empty lIst 1s returned.
FIRST(LIST L)

Returns the first element In L. If L. Is empty, then It returns zero (O).
ISEMPTY(LIST L)

Returns one (1) If L Is empty, zero (0) otherwise,

LISTLENGTH(LIST L) '

Returns the number of elements In L. An empty list has zero (0) elements.
NEWLIST(LIST L)

Returns an empty list.

REVERSE(LIST L)
Returns a list contalning the elements of L 1n reverse order.

30

..

sy
. .

a

Program 4
(Note that a 'file’ Is the same thing as an IBM ‘'dataset’.)

The program malntalns a database of bibllographlc references. It first reads a mas-
ter flle of current references, then reads a flle of reference updates, merges the two, and
produces an updated master flle and a cross rer'erence table of keywords.

The first Input flle, the master, contalns records of 74 characters with the following
format:
column comment

1 - 3 each reference has a unique reference key

4 - 14 author of publlication

15 - 72 tltle of publication

73 - 74 year Issued

The key should be a three (3) character unlque ldentifler consisting of letters between
A-Z. The next lnput flle, the update flle, contalns records of 75 characters In length.
The only difference from a master flle record 1s that an update record has elther an "A’
(capltal A meaning add) or a 'R’ (capital R meaning replace) In column 75. Both the
master and update flles are expected to be already sorted alphabetlically by reference key
when read into the program. Update records with actlon replace are substituted for the
matchlng key record In the master file. Records with actlon add are added to the mas-
ter file at the appropriate locatlon so that the flle remalns sorted on the key fleld. For
example, a valld update record to be read would be (Including a numbered line just for
reference)

123456780012345678901234567890123456786012345878901234587890123456789012345

BlTbaker an Introduction to program testlng 83A

The program should produce two pleces of output. It should first print the sorted
list of records In the updated master flle In the same format as the original master flle.
It should then print a keyword cross reference list. All words greater than three charac-
ters In a publlcation’s title are keywords. These keywords are listed alphabetlcally fol-
lowed by the key flelds from the applicable updated master flle entrles. For example, If
the updated master flle contalned two records,

ABCkermt t Introduction to software testling 82
3X] >nes the realltles of software management 81

then the keywords are introduction, testing, realitles, software, and management. The
cross reference list should look llke

Introduction
ABC

management
DDX

realltles

- - o e A Te L Te T e T

” m‘-. ML AR A g aAd o G SNl SN e g giv Sran e St auh gen.

TETVYYIY

AT AR A iR Sl S g A SR Al AR AIC A Y CRCI SR B S SN S B SN A RN i e SR M A S

DDX
software
ABC
DDX
tesiing
ABC

Some possible error condlitlons that could arlse and the subsequent actions include
the following. The master and update flles should be checked for sequence, and If a
record out of sequence 1s found, a message simlilar to 'key ABC out of sequence’ should
appear and the record should be discarded. If an update record indlcates replace and
the matching key can not be found, a message simllar to 'update key ABC not found’
should appear and the update record should be ignored. If an update record indlcates
add and a matching key s found, something like 'key ABC already In flle’ should ap-
pear and the record should be ignored. (End of specification.)

7.2. Appendix B. The Source Code for the Programs

Program 1

001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE FUNCTION MATCH".

002: C IT IS DESCRIBED THE FIRST TIME IT IS USED, AND ITS SOURCE CODE

003: C IS INCLUDED AT THE END FOR COMPLETENESS.

004: C

005: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS INCLUDE
A LEADING

008: C AND REQUIRED ' ' FOR CARRIAGE CONTROL

008: C VARIABLE USED IN FIRST, BUT NEEDS TO BE INITIALIZED

009: INTEGER MOREIN

010: '

011: C STORAGE USED BY GCHAR

012: INTEGER BCOUNT

013: CHARACTER*1 GBUFER(80)

Ol14: CHARACTER=*80 GBUF

015: C GBUFER AND GBUFSTR ARE EQUIVALENCED
016:

017: C STORAGE USED BY PCHAR

018: INTEGER I

019: CHARACTER=*1 OUTLIN(31)

020: C OUTLIN AND OUTLINST ARE EQUIVALENCED
021:

022: CHARACTER=*1 GCHAR

023:

024: C CONSTANT USED THROUGHOUT THE PROGRAM
025: CHARACTER+*1 EOTEXT, BLANK, LINEFD

026: INTEGER MAXPOS

027

028: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,

029: X EOTEXT, BLANK, LINEFD, GBUFER, GBUF

031: DATA EOTEXT, BLANK, LINEFD, MAXPOS / '/*, " ’, "&’, 31 /

32

T v, T,

-
-

RS e B

032:
033:
" 034: CALL FIRST
. 038: END
- 038:
. 037:
2 038: SUBROUTINE FIRST
'.: 039: INTEGER K, FILL, BUFPOS
040: CHARACTER=+1 CW
- 041: CHARACTER+*1 BUFFER(31)
o 042:
- 043: INTEGER MOREIN, BCOUNT, I, MAXPOS
- 044: CHARACTER=*1 OUTLIN(31), GCHAR, EOTEXT, BLANK, LINEFD,
04S5: X GBUFER(80)
046: CHARACTER#*80 GBUF
047:
048: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,
049: X EOTEXT, BLANK, LINEFD, GBUFER, GBUF
050:
0§1: BUFPOS == 0
052: FILL = 0
053: CW ="'
054:
035: MOREIN =1
0586:
057: I=1
058: K=1
059: DOWHILE (K .LE. MAXPOS)
- 080: OUTLIN(K) =
- 061: K=K-+1
- 062: ENDDO
- 063:
3 0844: BCOUNT =1
065: K=1
086: DOWHILE (K .LE. 80)
087: GBUFER(K) = "Z’
. 068: K=K+1
- 089: ENDDO
- 070:
' 071: DOWHILE (MOREIN)
072: CW = GCHAR()
073: IF ((CW EQ. BLANK) .OR. (CW EQ. LINEFD) .OR.
074: X (CW .EQ. EOTEXT)) THEN
. 075: IF (CW EQ. EOTEXT) THEN
. 076: MOREIN = 0
077: ENDIF
T 078: IF ((FILL+1+BUFPOS) .LE. MAXPOS) THEN
- a79: CALL PCHAR(BLANK)
- 080: FILL = FILL + 1
: 081: ELSE
- 082: CALL PCHAR(LINEFD)
< 083: FILL =0
084: ENDIF
085: K=1
086: DOWHILE (K .LE. BUFPOS)

33

B AP R R R R AN

- " "0 ‘- .__'. ey _"
S et 4. - \ KA AR e '1'-. o T e SR

087: CALL PCHAR(BUFFER(K))

088: K=K+1

089: ENDDO

090: FILL == FILL 4 BUFPOS

091: BUFPOS =0

092: ELSE

093: IF (BUFPOS .EQ. MAXPOS) THEN
094: WRITE(8,10)

095: 10 FORMAT(’ *,’***sWORD TO LONG#*#=")
096: MOREIN =1

097: ELSE

098: BUFPOS = BUFPOS + 1

099: BUFFER(BUFPOS) = CW
100: ENDIF

101: ENDIF

102: ENDDO

103: CALL PCHAR(LINEFD)

104: END

105:

108:

107: CHARACTER=*1 FUNCTION GCHAR()

108: INTEGER MATCH

109: CHARACTER#*80 GBUFSTR

110:

111: INTEGER MOREIN, BCOUNT, I, MAXPOS

112: CHARACTER=#*1 OUTLIN(31), EOTEXT, BLANK, LINEFD,
113: X GBUFER(80)

114: CHARACTER#*80 GBUF

115: COMMON /ALL/ MOREIN, BCOUNT, [, MAXPOS, OUTLIN,
116: X EOTEXT, BLANK, LINEFD, GBUFER, GBUF
117

118: EQUIVALENCE (GBUFSTR,GBUFER)

119:

120: IF (GBUFER(1) .EQ. 'Z’) THEN

121: READ(5,20) GBUF

122: 20 FORMAT(A80)

123: C

124: C MATCH(CARRAY,C) RETURNS 1 [F CHARACTER C IS IN
CHARACTER ARRAY
125: C CARRAY, RETURNS 0 OTHERWISE. ARSIZE IS THE SIZE OF CARRAY.

1268: C
127: IF MATCH(GBUF ,EOTEXT) .EQ. 0) THEN
_ 128: WRITE(8.30)
L 129: 30 FORMAT(' ','#»*»*NO END OF TEXT MARK *#x")
- 130: GBUFER(2) = EOTEXT
_f: 131 ELSE
: 132: C GBUFER(1) = GBUF
b 133: GBUFSTR = GBUF
ENDIF
ENDIF

GCHAR = GBUFER(BCOUNT)
BCOUNT = BCOUNT + 1
END

34

LI
. LR
b \A“\n‘

fas gy RNt i Jae Jeni Senih Justh Mle S et MBIt Sl ISa Mt St i D M SR N Y S Y A=A T

141: SUBROUTINE PCHAR (C)

142: CHARACTER#*1 C
143: CHARACTER#*31 SOUT, OUTLINST
144: INTEGER K
145:
1486: INTEGER MOREIN, BCOUNT, I, MAXPOS
147: CHARACTER+1 QUTLIN(31), GCHAR, EOTEXT, BLANK, LINEFD,
148: X GBUFER(80)
149: CHARACTER#*80 GBUF
150: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,
151: X EOTEXT, BLANK, LINEFD, GBUFER, GBUF .
152:
153: EQUIVALENCE (OUTLINST.OUTLIN)
154:
155: IF (C .EQ. LINEFD) THEN
156: SOUT = OUTLINST
157: WRITE(6,40) SOUT
158: 40 FORMAT(’ ',A31)
159: K=1
160: DOWHILE (K .LE. MAXPOS)
161: OUTLIN(K) = "’
162: K=K+1
183: ENDDO
164: I=1
165: ELSE
"~ 168: OUTLIN(I) = C
167: I=1+1
168: ENDIF
169: END

Program 2

—

:INT WIDTH = 30,
HEIGHT = 20,
GRIDWD = 61,
LARGENUM = 100000000
STRING TICKS|[61] =

T A o e A

: PROC SORT (INT ARRAY KEYBUF, INT ARRAY FREEBUF, INT N)

INT 1. MAXP
INT ARRAY SRTKEYB(100), SRTFREEB(100)

I:'=0

WHILE I < N DO
SRTKEYRB(l) .= KEYBUF(I)
SRTFREEB(I) := FREEBUF(I)

v I R

=1

18: I =1+1

19: END

20:

21: I =N

22: WHILE 1 > 0 DO

23: MAXP = MAXELE(SRTKEYB.D

35

O R

PR Y - - - -.-- - - -'_- .-i_-'.."-'-‘.A"~".
LA TS, Syl S A i T, k. G AL SR U, Sy L, Sy A, S PV . S A W

S-S A- S A-aell Sad il Ak it Sl Al N Ak Suf Aol SR el A

LN Toh TRACIS R Ly e EANASUAN S AR M soi Wi e SRS SN Attt AR A A A S 0 S0 SIS T S i mal Aty el Sl Sl A Sl S e A

»

ot 24: KEYBUF(N-]) ;= SRTKEYB(MAXP)
'_.: 25: FREEBUF(N-I) :== SRTFREEB(MAXP)
26: CALL REMOVE(SRTKEYBMAXP,I)
- 27: CALL REMOVE(SRTFREEB.MAXP,I)
28: I:=1-1
y 29: END

~ 3z:
4 33: INT FUNC MAXELE (INT ARRAY BUF, INT N)
. 34:
35: INT I, MAXPTR, MAX
- - 386:

37: MAXPTR = -1
- 38: MAX := -LARGENUM
39: I:=0
40: WHILEI < NDO
. 41: IF BUF(I) > MAX
ny 42: THEN
43: MAX := BUF(I)
44: MAXPTR =1
oy 45: END
' 46: [:=1+1
47: END
o 48: RETURNMAXPTR)

~ 52: INT FUNC MINELE (INT ARRAY BUF, INT N)

- 54: INT I, MINPTR, MIN
= 55:
- 56: MINPTR :=-1

$7: MIN := LARGENUM
i 58: I:=0
59: WHILE I < N DO
60: IF BUF(I) < MIN
61: THEN
- 82: MIN := BUF(I)
63: MINPTR = I
. 684: END
. 85: Ii=I+1 '
66: END
87: RETURN(MINPTR)

71: PROC REMOVE (INT ARRAY BUF, INT PTR, INT N) :
X 73: INTI
~

. 73: I1:=PTR

. 78: WHILE I < N-1 DO
77 BUF(I) := BUF(I+1)
. 78: I:=1+1

- 38

b

. = - B
I L
e S RIS WA

B B T N DN A 0y

79: END
80:
81:
83:
83: INT FUNC ABS (INT VAL)
84:
85: IFVAL < 0
86: THEN
87: RETURN(-VAL)
88: ELSE
89: RETURN(VAL)
90: END
91:
g2:
93:
94: INT FUNC SLASH (INT TOP, INT BOT)
95: ’
98: INT RES
97:
98: RES := TOP/BOT
99: IF TOP <> RES«BOT .AND.
100: (TOP > 0 . AND. BOT > 0.0OR. TOP < 0 .AND. BOT < 0)
101: THEN RES :=RES + 1
102: END
103: RETURN(RES)
104: ‘
105: INT FUNC MOD (INT N, INT M)
108:
107: INT VAL
108:
109: VAL := N-N/MsM
110: IF VAL < 0
111 THEN
112: VAL = VAL + M
113: END
114: RETURN (VAL)
1186:
116:
117: PROC MAIN
118:
119: CHAR ARRAY GRID(81)
120: STRING STR[81]
121: INT ARRAY XVAL(100), YVAL(100)
122: INT I, J. NUMOBS, MAXY, MAXX, MINX, HORISP, VERTSP, VLINE
123:
124: [:==0
: 125: WHILE .NOT. EOI DO
126: READ(XVAL(I),YVAL(I))
127: I['=1I+1
128: END
129: NUMOBS = |
130:
131: CALL SORT(YVAL .XVAL ,NUMOBS)
132: MAXY == YVAL(0)
133: VERTSP .= SLASH(MAXY HEIGHT)

37

DA A I R PR R LML I I S S e S e bunihe e Ns 29 2 Diatieay Tna it Nihe R A N e v T b Jria JIARCR te i it A R et e

4,
.I
o 134:
. 135: MAXX :a= XVALMAXELE(XVAL,NUMOBS))
=l 136: MINX := XVAL(MINELE(XVAL,NUMOBS))
- 137: IF ABS(MINX) > ABS(MAXX)
138: THEN
Y 139: HORISP := SLASH(ABS(MINX),WIDTH)
- 140: ELSE
Y 141: HORISP := SLASH(ABS(MAXX),WIDTH)
N 142: END
) 143:
144: STR =" X AXIS®
- 145: WRITE(STR.SKIP)
- 146 I:=0
o 147: VLINE := HEIGHT
148: WHILE VLINE > 0 DO
149:
‘ 180: J:=0 _
o 151: IF MOD(VLINE,S5) == 0
. 152: THEN
e 153: UNPACK(TICKS,GRID)
154: ELSE
» 155: WHILE J < GRIDWD DO
v 156: GRID(J) ;=" "
.- 157: =J+1
158: END
159: END
160:
161: VLINE :== VLINE - 1
~ 1682:
. 163: WHILE VLINE*VERTSP < YVAL(I) DO
. 164: IF XVAL(l) >=0 :
: 168: THEN)
: 166: GRID(WIDTH + SLASH(XVAL(I),HORISP)) := "+~
- 167: ELSE
168: GRID(WIDTH - SLASH(-XVAL(I), HORISP)) := "+~
. 189: END
“< 170: I==1+1
: 171: END
- 172:
L-; 173: GRID(WIDTH) == =|"
> 174 PACK(GRID,STR)
D 178: WRITE(STR,SKIP)
; 178: END
- 177
- 178: STR :=
" | = || || || f— ||’
179: UNPACK(STR.GRID)
180: WHILE 0 <== YVAL(l) . AND.I <~ ~ MOBS DO
181: IF XVAL(l) >=0
- 182: THEN
- 183: GRID(WIDTH + SLASH(XVAL(I),HORISP)) 1= ""
. 184: ELSE
- 185: GRID(WIDTH - SLASH(-XVAL(I),HORISP)) := ""
186 END
. 187: I=1I+1

L N 38

RN S A G g g - i A AR i "'.‘!

188: END
189:
190: PACK(GRID,STR)
- 191: WRITE(STR,SKIP)
b, 192: STR ==’ Y AXIS®
. . 193: WRITE(STR,SKIP)
. 194:
E 195: START MAIN .
-. . Program 8
.
- 001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE FUNCTIONS
DRIVER, GETARG, 1
002: C CHAREQ, CODE, AND PRINT. THEIR SOURCE CODE IS
DESCRIBED AND
003: C INCLUDED AT THE END FOR COMPLETENESS.
004: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS
INCLUDE A LEADING
005: C AND REQUIRED ' * FOR CARRIAGE CONTROL
006: C
007: INTEGER POOL(7), LSTEND
008: INTEGER LISTSZ
009: C
010: COMMON /ALL/ LISTSZ
011: C
012: C
013: LISTSZ =5
0l14: CALL DRIVER (POOL, LSTEND) 1
015: STOP
0186: END
017: C
018: C
019: FUNCTION ADFRST (POOL, LSTEND, I)
020: INTEGER ADFRST
021: INTEGER POOL(7), LSTEND, I
022: INTEGER LISTSZ
023: COMMON /ALL/ LISTSZ
024: C
025: INTEGER A
028: C
027: IF (LSTEND .GT. LISTSZ) THEN
028: LSTEND == LISTSZ - 1
029: ENDIF
030: LSTEND = LSTEND + 1
031: A = LSTEND
032: DOWHILE (A .GE. 1)
033: POOL(A+1) == POOL(A)
034: A== A-1
03s: ENDDO
036: C
037: POOL(1) = I
038: ADFRST = LSTEND
039: RETURN
040: END
041: C

39

EANEACAN AL et LA S el uPa S N AP A A AR S A A R R A

043: FUNCTION ADLAST (POOL, LSTEND, I)
044: INTEGER ADLAST
045: INTEGER POOL(7), LSTEND, 1
0486: INTEGER LISTSZ
047: COMMON /ALL/ LISTSZ
048: C
049: IF (LSTEND .LE. LISTSZ) THEN
050: LSTEND = LSTEND + 1
0S1: POOL(LSTEND) == 1
052: ENDIF
053: ADLAST = LSTEND
054: RETURN
055: END
0568: C
057: C
0s8: FUNCTION DELFST (POOL. LSTEND)
059: INTEGER DELFST
060: INTEGER POOL(7), LSTEND
061: INTEGER LISTSZ
062: COMMON /ALL/ LISTSZ
063: C
064: INTEGER A
065: IF (LSTEND .GT. 1) THEN
“ 066: A=1
M 087 LSTEND = LSTEND - 1
-, 068: DOWHILE (A .LE. LSTEND)
a 069: POOL(A) == POOL(A+1)
b 070: A=A+1
. 071: ENDDO
[072: ENDIF
L 073: DELFST == LSTEND
074: RETURN
075: END
078: C
o77T: C
078: FUNCTION DELLST (LSTEND)
079: INTEGER DELLST
080: INTEGER LSTEND
081: C
082: TF (LSTEND .GE. 1) THEN
083: LSTEND == LSTEND - 1
084: ENDIF '
085: DELLST == LSTEND
088: RETURN
087: END
08s: C
089: C
090: FUNCTION FIRST (POOL, LSTEND)
091: INTEGER FIRST
092: INTEGER POOL(7), LSTEND
093: C
094: IF (LSTEND .LE. 1) THEN
095: FIRST = 0
096: ELSE
40
oAt NSO
PSR N R

098:
099:
100:
101:
102:
103:
104:
108:
1086:
107:
108:
109:
110:
111:
112:
113:
114:
115:
1186:
117
118:
119:
120:
121:
122:
123:
124:
125:
128:
127:
128:
129:
130:
131:
132:
133:
134:
13§:
136:
137:
138:
139:
140:
141:
142:
143:
144:

145:
146:
147:

aa

OO

Qo

a0

FIRST == POOL(1)
ENDIF
RETURN
END

FUNCTION EMPTY (LSTEND)
INTEGER EMPTY
INTEGER LSTEND

IF (LSTEND .LE. 1) THEN
EMPTY =1
ELSE
EMPTY = 0
ENDIF
RETURN
END

FUNCTION LSTLEN (LSTEND)
INTEGER LSTLEN
INTEGER LSTEND

LSTLEN == LSTEND - 1
RETURN
END

FUNCTION NEWLST (LSTEND)
INTEGER NEWLST
INTEGER LSTEND

NEWLST =0
RETURN
END

SUBROUTINE REVERS (POOL, LSTEND)
INTEGER POOL(7), LSTEND

INTEGER I, N

N = LSTEND

I=1

DOWHILE (I .LE. N)
POOL(I) = POOL(N)
N=N-1
I=1+1

ENDDO

RETURN

END

Program 4

001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE ROUTINES

41

...'...-.._..._ - .~\.>. " \- ..- ‘.- \ \ ----- Tat e '-\\ \ \ \- .‘-. ‘- \. \L\ \ .‘- e -
W 2

. Ty e LY T L4 v (BN JWr e AV G- R Aa i S M ASoU g S s ol el Sad. Nl Sed td Sl Adk ot Sl BV AN AN Aol gun Snd Seh aodh AR ayiie otk NS et e/ MM

DRIVER, STREQ, WORDEQ,

002: C NXTSTR, ARRCPY, CHARPT, BEFORE, CHAREQ, AND WRDBEF.
THEIR SOURCE

003: C CODE IS DESCRIBED AND INCLUDED AT THE END FOR
COMPLETENESS.

004: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS
INCLUDE A LEADING

005: C AND REQUIRED * ' FOR CARRIAGE CONTROL

006: C THE SFORT LANGUAGE CONSTRUCT ".IF (EXPRESSION)' BEGINS
A BLOCKED

007: C IF-THEN({-ELSE] STATEMENT, AND IT IS EQUIVALENT TO
THE F77

008: C 'TF (EXPRESSION) THEN".

009: C

= 010: CALL DRIVER

F o11: STOP
P 012: END

013:
014:
015: SUBROUTINE MAINSB
- 018: C

017: LOGICAL#*1 USKEY(3),USAUTH(11),US$TITL(58), USYEAR(2), USACTN(1)
018: LOGICAL»*1 MSKEY(3) MSAUTH(11), M$TITL(58),MSYEAR(2)

019: LOGICAL#*1 ZZ2Z(3), LASTUK(3), LASTMK(3)

020: LOGICAL=*1 STREQ, CHAREQ, BEFORE, CHARPT

021: INTEGER I

022: C

023: . LOGICAL=*1 WORD(500,12), REFKEY(1000,3)

024: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)

025: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT

ao

026: C
027: WRITE(8,290)
028: 2900 FORMAT('',’ UPDATED LIST OF MASTER ENTRIES’)
029: DO 3001 =1, 3 ‘
030: LASTMK(I) = CHARPT(’ ")

" 031: LASTUK(I) = CHARPT(" ")

_ 032: ZZZ(I) = CHARPT('Z")

033: 300 CONTINUE

034: C

035: NUMWDS == 0

0386: NUMREF == 0

037: CALL GETNM(MS$KEY M$AUTH MSTITL M$YEAR,LASTMK)

038: CALL GETNUP(USKEY,USAUTH,USTITL .USYEAR,USACTN,LASTUK)

. « ¥
[A A

039: C~

040: DOWHILE ((.NOT.(STREQMS$KEY,ZZZ.3))) .OR.

041: X (.NOT.(STREQ(USKEY.22Z,3))))

042: IF (STREQ(USKEY M$KEY,3))

043: IF (NOT.(CHAREQ(USACTN(1),'R")))

044: WRITE(6,100) USKEY

045: 100 FORMAT(' ',’KEY ',3A1,’ IS ALREADY IN FILE’)

048: ENDIF

047: CALL OUTPUT(USKEY,USAUTH,USTITL,USYEAR)

048: CALL DICTUP(USKEY.USTITL,58)

049: CALL GETNM(MSKEY MSAUTH MSTITL MSYEAR.LASTMK)
050: CALL GETNUP(USKEY,USAUTH,US$TITL,USYEAR.USACTN,LASTUK)

051:
052:
053:
054:
055:
056:
057:
058:
059:
080:
061:
082:
083:
084:
065:
068:
087:
068:
069:
o70:
071:
072:
073:
074
075:
076:
077
078:
079:
080:
081:
082:
083:
084:
085:
086:

087

088:
089:
090:
091:
092:
093:
094:
095:
098:
097:
098:
099:
100:
101:
102:
103:
104:
108:

ENDIF
C
IF (BEFORE(MSKEY,3,USKEY,3))
CALL OUTPUT(MSKEY MS$AUTH,MS$TITL M$YEAR)
CALL DICTUP(MSKEY M$TITL,58)
CALL GETNM(MS$KEY M$AUTH M$TITL M$YEAR,LASTMK)
ENDIF
C
IF (BEFORE(USKEY,3 M$KEY,3))
IF (CHAREQ(USACTN(1).R"))
WRITE(S,110) USKEY
110 FORMAT(’ *,'UPDATE KEY ’,3A1,"” NOT FOUND’)
ENDIF
CALL OUTPUT(USKEY,USAUTH,USTITL,USYEAR)
CALL DICTUP(USKEY,USTITL,58)
CALL GETNUP(USKEY,USAUTH,USTITL, USYEAR,USACTN,LASTUK)
ENDIF
ENDDO
(o}
CALL SRTWDS
CALL PRTWDS
RETURN
END
C
C
SUBROUTINE GETNM(KEY,AUTH,TITL,YEAR,LASTMK)
LOGICAL=*1 KEY(3),AUTH(11),TITL(58), YEAR(2),LASTMK(3)
C
LOGICAL#*1 SEQ, INLINE(80)
LOGICAL=*1 BEFORE, CHARPT, CHAREQ
LOGICAL*1 GOM, GOU
COMMON /DRIV/ GO$M, GOSU
C
SEQ =1
DOWHILE (SEQ)
IF (GO$M)
C
C READ FROM THE MASTER FILE
C
READ(10,200,END==299) INLINE
ELSE
(o}
C SEE REMARK ABOUT THE CHARACTER '%’ LATER IN THE ROUTINE.
C
INLINE(1) = CHARPT('%")
ENDIF
200 FORMAT(80A1)

DO 2101 =1,3
KEY(I) == INLINE(I)
210 CONTINUE
DO 2201 =1, 11
AUTH(I) = INLINE(3+1)
220 CONTINUE
DO 2301 =1, 58
TITL(I) = INLINE(14+1I)

PRl St Nl . Sadl tu il gl At SgCRaiCanis AsiEFal A A GEN AU A A A N I ol RN PR SN R i i et e S oA S i praC i R St SERK s S

e 2 uind
L e

108:
107:
108:
109:
110:
111:

112:

113:
114:
118:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
128:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:;
156:
157
158:

230 CONTINUE
DO 24011, 2
YEAR(I) == INLINE(72+I)
240 CONTINUE
C
C A METHOD OF SPECIFYING END-OF-FILE IN A FILE IS TO PUT
THE CHARACTER ‘%"’
C AS THE FIRST CHARACTER ON A LINE. THE DRIVER USES THIS
FOR MULTIPLE
C SETS OF INPUT CASES.
C
IF ((.NOT.(CHAREQ(KEY(1),’%"))) .AND.
X (BEFORE(KEY,3,LASTMK.,3)))
WRITE(6,250) KEY
250 FORMAT(’ ',’KEY ',3A1,' OUT OF SEQUENCE’)
ELSE
CALL ARRCPY(KEY,.LASTMK,3)
SEQ =0
ENDIF
JIF (CHAREQ(KEY(1),'%"))
SEQ =0
DO 2701=1,3
KEY(I) = CHARPT('Z")
270 CONTINUE
ENDIF
ENDDO
RETURN
2909 CONTINUE
GOSM =0
DO 2601=1,3
KEY(I) = CHARPT(’Z")
260 CONTINUE

RETURN

END
C
C

SUBROUTINE GETNUP(KEY,AUTH,TITL, YEAR ACTN,LASTUK)

LOGICAL=1 KEY(3),AUTH(11), TITL(58), YEAR(2),ACTN(1),LASTUK(3)
C

LOGICAL»1 SEQ, INLINE(80)

LOGICAL#*1 BEFORE, CHARPT, CHAREQ

LOGICAL+*1 GO$M, GOSU

COMMON /DRIV/ GOM, GOU
C

SEQ =1

DOWHILE (SEQ)

IF (GOS$U)
C
C READ FROM THE UPDATES FILE
C
READ(11,200,END==29¢) INLINE
ELSE

C
C SEE REMARK ABOUT THE CHARACTER '%' LATER IN THE ROUTINE.
C

44

k" S N LA A A f..'—."_"'_v-."i‘_"

159: INLINE(1) == CHARPT('%")

180: ENDIF

1681: 200 FORMAT(80A1)

162: DO210I=1,3

183: KEY(I) = INLINE(I)

164: 210 CONTINUE

165: DO 220 =1, 11

166: AUTH(I) = INLINE(3+1)

167: 220 CONTINUE

168: DO 2301 =1, 58

169: TITL(I) = INLINE(14+1I)

170: 230 CONTINUE

171: DO 240 ==1,2

172: YEAR(I) = INLINE(72+1I)

173: 240 CONTINUE

174: ACTN(1) = INLINE(75)

175: C

176: C A METHOD OF SPECIFYING END-OF-FILE IN A FILE IS TO PUT
THE CHARACTER ‘%’

177: C AS THE FIRST CHARACTER ON A LINE. THE DRIVER USES THIS

FOR MULTIPLE
178: C SETS OF INPUT CASES.
179: C
180: JIF ((NOT.(CHAREQ(KEY(1),"%"))) -AND.
181: X (BEFORE(KEY,3,LASTUK,3)))
182: WRITE(8,250) KEY
183: 250 FORMAT(' ',’KEY ’.3A1,” OUT OF SEQUENCE")
184: ELSE
185: CALL ARRCPY(KEY,LASTUK,3)
186: SEQ =0
187: ENDIF
188: JF (CHAREQ(KEY(1),'%"))
189: SEQ =0
190: DO 2701=1,3
191: KEY(I) = CHARPT('Z’)
192: 270 CONTINUE
193: ENDIF

194: ENDDO

195: RETURN
196: 299 CONTINUE
197: GO$U =o0

198: DO 2601 =1,3

199: KEY(I) == CHARPT('Z")
200: 260 CONTINUE

201: RETURN

202: END

203: C

204: C

205: SUBROUTINE OUTPUT(KEY,AUTH,TITL,YEAR)
2086: LOGICAL=*1 KEY(3), AUTH(11), TITL(58), YEAR(2)
207: C

208: WRITE(8.200) KEY, AUTH, TITL, YEAR

209: 200 FORMAT(' ',3A1,11A1,58A1,2A1)

210: RETURN

211: END
|
45 ‘
- . - - - - . - - - e N e e T T
e, P AT IR e Tt TR T e T T T e T e T e e e TN e e e e e e e e s e
SOOI S AT SR X W o RO LI LTS

. il - s R Radh auis auidk ANES ni SRGIL aSdh et oMM v AL oM ares e suivh g LAt St g TSl i A A Al Al ksl Anl dog
[e e e e e R A e e S LR U Lt e . A A A A S Pl N

aon

214: SUBROUTINE PRTWDS

2186: LOGICAL=*1 WORD(500,12), REFKEY(1000,3)

: 217: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)

. 218: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT
5 219: C

o 220: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A LINKED

LIST.
! 221: C WORD(1,J) IS A KEYWORD -~ J RANGING FROM 1 TO 12
.~ 222: C REFKEY(PTR(I) K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS
AS A
E' 5 223: C KEYWORD WORD(I,J),Ja=1,12
224: C REFKEY(NEXT(PTR(I)).K) K==1,3 IS THE SECOND 3 LETTER KEY
THAT HAS
225: C AS A KEYWORD WORD(L,J),J==1,12
228: C REFKEY(NEXT(NEXT(PTR(I))),K),K==1,3 IS THE THIRD ... ETC.
227: C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER
KEYS FOR
228: C THE PARTICULAR KEYWORD
229: C
230: INTEGER I, J
- 231: LOGICAL=*1 FLAG

3 232: C
- 233: WRITE(6,200)
- 234: 200 FORMAT(’’,’ KEYWORD REFERENCE LIST")
235: DO 2101 = 1, NUMWDS
238: FLAG =1
237: WRITE(8,220) (WORD(1,J),J==1,12)
- 238: 220 FORMATY(’ *,12A1)
239: LAST = PTR(])
240: DOWHILE (FLAG)
241: WRITE(6,230) (REFKEY(LAST,J),J=1,3)
242: 230 FORMAT('’,’ ’3Al)
243: LAST == NEXT(LAST)
244: JF (LAST EQ. -1)
245: FLAG =0
2486: ENDIF
247: ENDDO

- 248: 210 CONTINUE
— 249: RETURN
250: END

10
o
»
aa

253: SUBROUTINE DICTUP(KEY,STR,.STRLEN)
254: LOGICAL=*1 KEY(3), STR(120)

4 285: INTEGER STRLEN
. 256: C
257: LOGICAL*1 WDLEFT, FLAG, OKLEN, NEXTWD(120), WORDEQ
= 258: INTEGER LPTR, NXTSTR, LEN, LAB, I, K
259: C
s 260: LOGICAL#*1 WORD(500,12), REFKEY(1000,3)
261: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)
o 262: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT

46

Y
4
A
A

.
]
L
I
L
4

c

HRAACR AL AN AL L Mt g mi DL Ml N A A A A At Sl A L S aag auk Uad And Mt uph oplh ol Ak g8

-~ - w -
o Te v

T al.BL

263: C

284: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A
LINKED LIST.

265: C WORD(1,J) IS A KEYWORD — J RANGING FROM 1 TO 12

266: C REFKEY(PTR(I),K),K==1,3 IS THE FIRST 3 LETTER KEY THAT HAS

o AS A

~ 287: C KEYWORD WORID(1,J),J==1,12

) 268: C REFKEY(NEXT(PTR(I)).K)K=1,3 IS THE SECOND 3 LETTER KEY
THAT HAS

2680: C AS A KEYWORD WORD(1,J),J==1,12

270: C REFKEY(NEXT(NEXT(PTR(D))).K),K=1,3 IS THE THIRD ... ETC.

271: C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER
KEYS FOR

272: C THE PARTICULAR KEYWORD

273:. C

274: WDLEFT ==1

275: LPTR =1

278: C
277 DOWHILE (WDLEFT)
278: FLAG =1
279: OKLEN =1
280: LEN = NXTSTR(STR,STRLEN,LPTR.NEXTWD,120)
281: IF (LEN .EQ. 0)
282: WDLEFT == 0 .
283: ENDIF
284: C
285: JF (LEN .LE. 2)
286: OKLEN == 0
287: ENDIF
. 288: C
: 289: IF (OKLEN)
: 290: I=1
291: DOWHILE ((I .LE. NUMWDS).AND. FLAG)
292: IF (WORDEQ(NEXTWD.I))
293: LAB =1
- 294: FLAG =0
- 298: ENDIF
. 298: I=I+1
- 207: ENDDO
3 208: JF (FLAG)
: 299: NUMWDS = NUMWDS + 1
- 300: NUMREF = NUMREF + 1
- 301: DO 300 K =1, 12
302: WORD{NUMWDS,K) = NEXTWD(K)
303: 300 CONTINUE
304: PTR(NUMWDS) = NUMREF
- 305: DO 310K =1,3
; 308: REFKEY(NUMREF,K) = KEY(K)
- 307: 310 CONTINUE
;Z 308: NEXT(NUMREF) == -1
'-: 309: ELSE
; 3i0: NUMREF = NUMREF + 1
4 311 DO 320K =1,3
. 312: REFKEY(NUMREF ,K) = KEY(K)

313: 320 CONTINUE

Phcite el AR A A e AT e A S A S s SRR

314: NEXT(NUMREF) == PTR(LAB)

318: PTR(LAB) = NUMREF
318: ENDIF

317: ENDIF

318: ENDDO

319: C

320: RETURN

321 END

322: C

323: C

324: SUBROUTINE SRTWDS
325: C

326: LOGICAL=*1 WORD(500,12), REFKEY(1000,3)

327: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)

328: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT

320: C

330: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A
LINKED LIST.

331: C WORD(L,J) IS A KEYWORD ~ J RANGING FROM 1 TO 12

332: C REFKEY(PTR(1),K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS
AS A

333: C KEYWORD WORD(1,]),J=1,12

334: C REFKEY(NEXT(PTR(I)),K),K=1,3 IS THE SECOND 3 LETTER KEY
THAT HAS

335: C AS A KEYWORD WORD(1,J),J=1,12

336: C REFKEY(NEXT(NEXT(PTR(I))).K).K=1,3 IS THE THIRD.... ETC.

337: C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER
KEYS FOR

338: C THE PARTICULAR KEYWORD

339: C

340: INTEGER 1, J, K, LAB, LOWERB, UPPERB

341: LOGICAL=*1 WRDBEF, NEXTWD(12)

342: C

343: UPPERB = NUMWDS - 1

344: DO 4001 = 1, UPPERB

345: LOWERB=1+1

3486: DO 410 J = LOWERB, NUMWDS
347 JIF (WRDBEF(J,1))

348: DO 300K =1, 12

349: NEXTWD(K) = WORD(LK)
350: 300 CONTINUE

351: LAB = PTR(I)

352: DO 310K =1, 12

353: WORD(L.K) = WORD(J.K)
354: 310 CONTINUE

355: PTR(I) = PTR(J)

356: DO 320K =1, 12

357: WORD(J,K) = NEXTWD(K)
358: 320 CONTINUE

359: PTR(J) = LAB

360: ENDIF

361: 410 CONTINUE
362: 400 CONTINUE
383: C

384: RETURN

48

.....

P T e -
st eyt e e e e

365

END

49

P—

AR AP

PR v R N

8. References

[Baslll & Turner 78]
V. R. Baslll and A. J. Turner, SIMPL-T: A Structured Programming
Language, Paladin House Publishers, Geneva, IL, 1976. ‘

[Bastill & Perricone 84]
V. R. Baslll and B. T. Perricone, Software Errors and Complexity: An Em-
pirical Investigation, Communications of the ACM 27, 1, pp. 42-52, Jan.
1984.

(Baslll & Seiby 84]
V. R. Baslll and R. W. Selby, Jr., Data Collection and Analysis In Software
Research and Management, Proceedings of the American Statistical Associa-
tion and Biomelric Society Joint Statistical Meetings, Philadelphla, PA, Au-
gust 13-16, 1084. '

[Baslllt & Welss 84)
V. R. Basill and D. M. Weiss, A Methodology for Collecting Valld Software
Engineering Data*, Trans. Software Engr. SE-10, 8, pp. 728-738, Nov. 1984,

{[Box, Hunter, & Hunter 78]
G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Ezperimenters,
John Wlley & Sons, New York, 1978.

(Callllau & Rublin 79]
R. Callilau and F. Rubin, ACM Forum: On a Controlled Experiment in Pro-
gram Testing, Communications of the ACM 22, pp. 687-8, Dec. 1979.

[Church 84])
V. Church, Benchmark Statistics for the VAX 11/780 and the IBM 4341,
Computer Sclences Corporation, Silver Spring, MD, Internal Memo, 1984.

[Cochran & Cox 50] ,
W. G. Cochran and G. M. Cox, Ezperimental Designs, John Wlley & Sous,
New York, 1950.

(Fagan 78]
M. E. Fagan, Design and Code Inspections to Reduce Errors {n Program De-
velopment, IBM Sys. J. 15, 3, pp. 182-211, 19786.

[Foster 80]

K. A. Foster, Error Sensitlve Test Cases, I[EEE Trans. Software Engr. SE-6,
3, pp. 258-264, 19880.

50

s e # 0 1 N

(Gloss-Soler 79]
S. A. Gloss-Soler, The DACS Glossary: A Bibllography of Software Englneer-

, ing Terms, Data & Analysis Center for Software, Grifflss Alr Force Base, NY
- 13441, Rep. GLOS-1, Oct. 1978.

. [Goodenough & Gerhart 75)
J. B. Goodenough and S. L. Gerhart, Toward a Theory of Test Data Selec-
tion, IEEE Trans. Software Engr., pp. 156-173, June 1975.

(Hetzel 76]

W. C. Hetzel, An Expermental Analysis of Program Verificatlon Methods,
Ph.D. Thesis, Unlv. of North Carollna, Chapel Hill, 1978.

(Howden 78]
W. E. Howden, Algebralc Program Testing, Acta Informatica 10, 1978.

(Howden 80]

. W. E. Howden, Functional Program Testing, IEEE Trans. Software Engr.
- SE-6, pp. 162-169, Mar. 1980.

¥ [Howden 81]

5 W. E. Howden, A Survey of Dynamlec Analysts Methods, pp. 209-231 In Tu-
torial: Software Testing & Validation Techniques, 2nd Ed., ed. E. Miller and
W. E. Howden, 1981.

5 [Hwang 81]
- S-S. V. Hwang, An Emplrical Study 1ln Functional Testing, Structural Test-

ing, and Code Readlng/Inspection*, Dept. Com. Sci., Unlv. of Maryland,
- College Park, Scholarly Paper 362, Dec. 1981.

o (IEEE 83]
- IEEE, IEEE Standard Glossary of Software Englneering Termlnology, Rep.
IEEE-STD-729-1983, IEEE, 342 E. 47th St, New York, 1983.

(Jensen & Wirth 74]

K. Jensen and N. WIirth,- PASCAL User Manual and Report, 2nd Ed.,
Springer-Verlag, New York, 1974.

[Johnson, Draper & Soloway 83]
W. L. Johnson, S. Draper, and E. Soloway, An Effectlve Bug Classification

Scheme Must Take the Programmer Into Account, Proc. Workshop High-
Level Debugging, Palo Alto, CA, 1983.

51

[Linger, Mills & Witt 79]
R. C. Linger, H. D. Mills, and B. 1. Witt, Structured Programming: Theory
and Practice, Addison-Wesley, Readlng, MA, 1979.

(McMullln & Gannon 80]
P. R. McMullln and J. D. Gannon, Evaluating a Data Abstraction Testing
System Based on Formal Specificatlons, Dept. Com. Scl., Unlv. of Maryland,
College Park, Tech. Rep. TR-993, Dec. 1980.

B Mills 72]
:_'.; H. D. Mills, Mathematlical Foundatlons for Structural Programmling, IBM
- Report FSL 72-6021, 1972.
b (Mills 75]
- H. D. Mllls, How to Write Correct Programs and Know It, Int. Conf. on Re-
. lsable Software, Los Angeles, pp. 363-370, 1075.
Myers 78]
G. J. Myers, A Controlled Experiment n Program Testing and Code
Walkthroughs/Inspectlons, Communications of the ACM, pp. 760-768, Sept.
1978.
[Myers 79] -
G. J. Myers, The Art of Software ‘Testing, John Wlley & Sons, New York,
19790.
(Naur 69]

P. Naur, Programming by Actlon Clusters, BIT 9, 3, pp. 250-258, 1969.

(Ostrand & Weyuker 83]
T. J. Ostrand and E. J. Weyuker, Collecting and Categorlzing Software Er-
ror Data in an Industrial Environment, Dept. Com. Scl., Courant Inst. Math.
Scl., New York Unlv., NY, Tech. Rep. 47, August 1982 (Revised May 1983).

[Selby 83]
R. W. Selby, Jr., An Empirical Study Comparing Software Testlng Tech-
niques, Sizth Minnowbrook Workshop on Software Performance Evaluation,
Blue Mountaln Lake, NY, July 19-22, 1983.

[Selby 84]
R. W. Selby, Jr., Evaluating Software Testing Strategles, Proc. of the Ninth

Annual Software Engineering Workshop, NASA/GSFC, Greenbelt, MD, Nov.
1984.

52

.
e ot W LN U L s m a sl e e [et Nl LS I S TR T T Tt SO A
atat W™ P I O LIRS I S A h Ll . AR

.........

b} -'\\ » . LA IS A S TR e
™ \)‘-,.‘-i‘af.f.\ PR Vo A TR AL, N tintin e o o o

[Selby, Basill & Baker 85)
R. W. Selby, Jr., V. R. Baslll, and F. T. Baker, CLEANROOM Software De-
velopment: An Emplirical Evaluation, Dept. Com. Scl., Unlv. Maryland, Col-
lege Park, Tech. Rep. TR-1415, February 1985. (submltted to the IEFE
Trans. Software Engr.)

[Stuck! 77]
L. G. Stuckl, New Directions in Automated Tools for Improving Software
Quallty, In Current Trends in Programming Methodology, ed. R. T. Yeh,
Prentice Hall, Englewood Cliffs, NJ, 1977.

[Valdes & Goel 83]
P. M. Valdes and A. L. Goel, An Error-Specific Approach to Testing, Proc.
Eight Ann. Software Engr. Workshop, NASA/GSFC, Greenbelt, MD, Nov.
1983.

[Welss & Baslll 85)
D. M. Welss and V. R. Baslll, Evaluating Software Development by Analysis
of Changes: Some Data from the Software Engineering Laboratory, IEEFE
Trans. Software Engr. SE-11, 2, pp. 157-168, February 1985.

PRt RN T T I SO Y

53

| Flgure 1. Cagabllmes of the testlng methods.
code reading functional structural
testing testing
view program
specification X X X
view source
code X X
execute
program X X

Figure 2. Structure of goals/subgoals/questions for testing experiment.

I. Fault detection effectlveness

A. For programmers doing unit testing, which of the testing technlques
(code reading, functional testing, or structural testing) detects the
most faults in programs?

1. Which of the techniques detects the greatest percentage of fauits in
the programs (the programs each contaln a different number of
faults)?

2. Which of the technlques exposes the greatest number (or percentage)
of program faults (faults that are observable but not necessarily
reported)?

B. Is the number of faults observed dependent on software type?

C. Is the number of faults observed dependent on the expertise level of the
person testing?

II. Fault detection cost

A. For programmers dolng unlt testlng, which of the testing technlques
(code reading, functional testing, or structural testing) detects the
faults at the highest rate (#faults/effort)?

B. Is the fault detection rate dependent on software type?

C. Is the fault detection rate dependent on the expertise level of the person
testing?

5 II1. Classes of faults observed

A. For programmers doing unlt testing, do the methods tend to capture
different classes of faults?

- B. What classes of faults are observable but go unreported?

Dl i

Flg
. Level of 1 2 3 total
g Expertise (Unlv. Md) (Univ.Md) (NASA/CSC) |
Advanced 0 0 8 8
N Intermedlate 9 4 11 24
% Junlor 20 9 13 42
N total 29 13 32 74

! Flgure 4. The programs tested. : I
source | executable | cyclomatic | #routines | #faults

_program llnes statments | complexity
P, - text 169 55 18 3 9
formatter
P, - mathematical 145 95 32 8 8
plotting
P 4 - numeric data 147 48 18 9 7
5 abstraction
N P, - database 365 144 57 7 12
:: malntalner

pPlrePdrs,

e Ty A S M il ad - T T—y RN Avie et st s st st e asenc s ojek adadrndes sk Mt
...... A0t LR ANyl A i Sl S S e S A il Pl L. . - LA SR et W M A B P

Program Phase
1 2 3
(Unlv. Md) | (Unlv. Md) | (NASA/CSC)_
P ; - text formatter X X X
P 4 - mathematical plotting X X
P 4 - numerlc data abstraction X X
P , - database malntalner X X

Flgure 8. Distribution of faults In the programs.

Omlisslon Commission | Total
Inltialization 0 2 2
Computation 4 4 8
Control 2 5 7
Interface 2 11 13
Data 2 1 3
Cosmetlc 0 1 1
Total 10 24 34

Flgure 7. Fault classificatlon and manifestation.

FaultProgram Omisslon/ Class Description
Commission
a P1 omlssion control a blank Is printed before the first word

on the first llne uniess the first word Is
30 characters long; In the latter case, a
blank llne Is printed before the first

word

b P1 commission Initializationthe character & (not $) 1s the new-llne
character

¢ P1 commlssion Initlalizatlonthe llne size s 31 characters (not 30);

thls fault causes the references to the
aumber 30 In the other faults to be ac-
tually the number 31

d P1 commlission Interface slnce the program pads an empty lnput
buffer with the character "z,” 1t lgnores
a valld Input llne that has a "z" as a
first character

e P1 omlsslon control successive break characters are not con-
densed ln the output

A f P1 commission cosmetic spelllng mistake In the error message

: “xxk word to long s%*”

' g P1 commission computationafter detecting a word In the Input
longer than 30 characters, the message
"xxx word to long »xx" Is printed once
for every character over 30, and the pro-
cessing of the text does not terminate

h P1 omlission Interface after detectlng a word In the loput
longer than 30 characters, the program
prints whatever 1s residing 1n Its output
buffer

1 P1 commission control after detectlng an Input line without an
end-of-text character, the program er-
roneously Increments Its buffer polnter
and replaces the first character of the
next Input line with a "z"

J P3 commlisslon Interface routine FIRST returns zero (0) when the
list has one element
» k P3 commlission Interface routine ISEMPTY returns true (1) when
- the list has one element
. 1 P3 commission Interface routine DELETEFIRST can not delete

the first list element when the llst has
only one element

- m P3 commission Interface routine LISTLENGTH returns one less

- than than the actual length of the list

' n P3 commlisslon Interface routlne ADDFIRST can add more than
the speclfled five elements to the list

- o) P3 commisslon Interface routine ADDLAST can add more than

. the specified flve elements to the list

- P P3 omlission computationroutine REVERSE does not reverse the

list properly when the list has more than
one element

q P4 commlission computatlonwords greater than or equal to three
characters (not strictly greater than) are
treated as cross reference keywords

r P4 commIission Interface since the program uses the key "ZZZ™ as
an end-of-lnput sentinel, it does not pro-
cess a valld record with key "ZZZ" and
Ignores any following records

S P4 commlission control update actlon add with the error cond!-

- tlon "Key already In the master flle” re-

places the existing record; the update

record Is not ignored

<
a, .

Yy
e trfy

o .
-

G "
. a0, e b
R T e U

v,
>,
-t
.
o
o,
>,

P4

commission control update actlon replace with the error con-
dition "key not found In the master flie”
adds the record; the update record Is not
1gnored

P4

omlission data the number of references and number of
words in the dictionary are not checked
for overflow

P4

omlssion computationtwo or more update transactlons for the
same master record give Incorrect results

P4

commission Interface Kkeywords longer than 12 characters are
truncated and not dlstln@shed

P4

commlission control an update record with column 80 nelther
an add actlon "A" nor replace action
"R” acts llke an add transaction

P4

commission Interface keyword Indices appear ln reverse alpha-
betical order

P4

omlssion Interface no check Is made for unique keys In the
master flle

P4

commlission Interface ‘punctuation is made a part of the key-
word

P4

omlssion data words appearing twice 1n a title get two .

cross reference entries

P2

commlission computationthe x and y axes are mlsiabeled

P2

omlssicn computationpoints with negatlve y-values are not
processed and do not appear on the

graph

P2

commission control the origin (0,0) appears on the graph re-
gardless of whether It 1s an input polnt

P2

commIlssion data no points can appear on the vertical axis

P2

commlission computationthe vertical and horizontal! scaling for
the pixels are calculated incorrectly,
causing some polnts not to appear in the
proper plxel

P2

omlssion computationwhen more than one polnt would appear
In a glven plxel, only an asterisk (x) ap-
pears, not an appropriate integer

...

N _Figure 8. Fractional FactorlalDeslgn.
| Code Functional Structural
N Readilng Testing Testing |
::, P1P3P4 P1P3P4 P,P,P4
;Z S, —X —X— X—

Advanced S, —X— X— —X
Subjects . .o
S X— —X —X—
Sy —X— X— —X
Inter- S 10 —X —X— X—
medlate . .o
Subjects . “ o
S 19 X— —X —X—
S g —X— X— —X
Junior S oy X— —X —X—
:j: Subjects .
.:‘.
X

Bl et A Y AN Aen Al S B v S St AL A badu ol A R Al el A S I A A

Figure 9. Overall summary of detectlon effectlveness data.
Note: some data pertaln to only on-llne technlques (x), and
some data were collected only In certaln phases.

Phase | #Subj. | Measure Mean SD Min. Max.
1 29 # Faults detected 3.94 1.82 0.00 7.00
1 29 % Faults detected 54.78 | 26.11 0.00 | 100.00
1 29(*) # Faults observable 5.38 1.51 3.00 8.00
1 20(*) % Faults observable 74.59 | 20.54 | 33.32 | 100.00
1 29(x) % Detected/observable | 70.99 | 24.01 0.00 | 100.00
2 13 # Faults detected 3.28 1.98 0.00 7.00
2 13 % Faults detected 39.53 | 27.25 0.00 | 100.00
3 32 # Faults detected 4.27 1.88 0.00 8.00
3 32 % Faults detected 49.82 | 27.44 0.00 | 100.00
3 32 % Faults felt found 75.10 | 24.07 0.00 | 100.00
3 32(x) # Faults observable 5.81 1.52 3.00 9.00
3 32(x) % Faults observable 82.11 | 18.38 | 25.00 | 100.00
3 32(*) % Detected/observable | 689.87 | 27.14 0.00 | 100.00
3 32(x) Max. % stmt. covered 97.02 7.83 | 46.00 | 100.00

Ave 74 # Faults detected 3.97 1.88 0.00 8.00
Ave 74 % Faults detected 49.96 | 27.29 0.00 | 100.00
Ave 81(*) # Faults observable 5.5 1.5 3.00 9.00
Ave 81(*) % Faults observable 68.0 20.3 25.0 100.0
Ave 81(*) % Detected/observable | 70.3 25.8 0.0 100.0

DR |

PRma Rt S

i e det

L IR i

P BN I R S I g

P U At A e R Nl Do

Figure 10. Distribution of the number of faults detected broken down by phase. Key: code

and structural testers (S).

__readers (C). functional testers

Phase 3:

Phase 1:

96 observations

SSFFFFFFFFFFFFFFCCCCC.A

87 observations

NN NEEEEREOODODOODOLOOLO L

Al
o+
sschcccccccc+

NN ERREEEEROOODDOO ¢+

DR EEOO0O0 ¢+

T

nonnnnunnnnnEREVLOLOO ¢+
nunwnunnniOL4+
SSSSF‘_'

SC._‘

Uﬁ

Wbk DODDOODOOO

NN kR DO+
0w kB REEDODDO+

SSSSSFFFFFFCCC.A-

SSSSSSSFFFFCCC.A-

nnOLL +

n +

Phase 2:

Av

o+

39 observations -

A\

SSFFFC#
0O+
NNk OLO ¢+
B ke O+
nnnnkLO 4

nOOLOLO ¢

e+

LI PRINA

PP

N
}. TS \.

-

O
NN

“ata
o Ty
.,

et

.
.

1-\5' é
. o

n.’x -" -

LSRN
& -
.

A en =,
(\-\-'. .

|l - h- B AN Basen aven v f Y g S

Mt Sl —" T T - e
U e e e St SN i S i i~ S i A S b MM - e At s i A Sl P i S DO S S i S

- -
(I
A

P Flgure 11. Overall summary for number of faults detected.
Phase
1 2 3
Effect Level Mean(SD) | Mean(SD) Mean(SD)
Technlique Reading 4.10 (1.93) | 38.00 (2.20) | 5.09 (1.92)
Functional | 4.45 (1.70) | 3.77 (1.83) | 4.47 (1.34)
Structural

4.07 (1.82)

Program Formatter 3.23 (2.20) | 4.19 (1.73)
Plotter 3.48 (1.45) | 3.31 (1.97) L ()

Data type | 4.28 (2.25) . () 5.22 (1.75)

Database . () 3.31 (1.84) | 3.41 (1.88)

Expertise Junior 3.88 (1.89) | 3.04 (2.07) | 3.90 (1.83)

Intermed. | 4.07 (1.69) | 3.83 (1.84) | 4.18 (1.99)

Advanced () . () 5.00 (1.53)

Figure 12. Overall summary of fault detectlon cost data. Note:
some data pertaln to only on-llne technlques (x), and some,
data were collected only In certaln phases.
Phase | #Sub). | Measure Mean SD Min. Max.
1 29 # Faults / hour 1.63 1.28 0.00 7.00
1 29 Detectlon time ghrsz 3.33 2.09 0.75 10.00
2 13 # Faults / hour 0.99 0.81 0.00 3.00
2 13 Detectlon time (hrs) 4.70 3.02 1.00 14.00
3 32 # Faults / hour 2.33 2.28 0.00 14.00
3 32 Detectlon time (hrs) 2.75 1.57 | 0.50 7.25
3 32(*) Cpu-time (sec) 45.2 56.1 3.0 283.0
3 32(x) Cpu-time (sec; norm.) | 38.5 51.7 2.9 314.4
3 32(x) Connect time (min) 85.83 | 50.21 | 3.50 | 214.00
3 32!*2 ﬁ program runs 5.45 5.00 1.00 24.00
Ave 74 Faults / hour 1.82 1.80 0.00 14.00
Ave 74 Detectlon time (hrs) 3.32 2.19 | 0.50 14.00

s

S

S
Ss
8S
S8
Ss
$S
SS
FSS
FFS
FFS
FFSS
FFSS
FFFS
CFFF
CFFF

Phase 1:
87 observations

1

10 s

Phase 2:
39 observations

10 15

Figure 13. Distribution of the fault detection rate (#fauits detected per hour) broken down

‘ by phase. Key: code readers (C), functional testers (F). and structural testers (S).

Phase 3:
96 observations
S
S
Ss
Ss
SF
SF
SFS
SFS
FFS
FFS
SFFF
SFCF
SFCF S
SSFCFSF S
SFOCCSFS S
FFOCCFFF S
SCFCOCCFCC S C

Hywinn

COCCOCFOCCF CFC C € CC C

e o e e e - —t—

0 5 10

Ethe A I A Y

v,
- Figure 14. Overall summary for fault detection rate (# faults
‘- detected per hour).
Phase
1 2 3
Effect | Level Means SD l Means SD Z Mean(SD Z
Technlque Reading 1.90 (1.83) | 0.56 (0.468) | 3.33 (3.42)
Functional 1.58 (0.90) 1.22 (0.91) 1.84 (1.08)
Structural | 1.40 (0.87) | 1.18 (0.84) | 1.82 (1.24)
Program Formatter | 1.60 (1.39) | 0.98 (0.87) | 2.15 (1.10)
Plotter 1.19 (0.83) | 0.92 (0.71) . (.)
Data type | 2.09 (1.42 . (.) 3.70 (3.28)
Database . “ 1.05 $1.04) 1.14 $0.792
Expertise Junlor 1.368 (0.97) | 1.00 (0.85) | 2.14 (2.48)
Intermed. | 2.22 (1.88) | 0.98 (0.74) | 2.53 (2.48)
Advanced . (.) . () 2.36 (1.61)

Flgure 15. Characterization of the faults detected.

Omlission

55.8 (40.1)

Functlonal

81.0 (39.5)

S.ructural
Testin

39.2 (41.8)

Overall

52.0 (41.3)

Commission

_| 443 (28.6)

50.7 528.4 2

Initial. 84.8 (40.3) | 75.0 (38.1) | 46.2 (39.8) | 61.5 (40.2)
Control 42.8 (368.8) | 66.7 (34.9) | 48.8 (38.5) | 52.8 (37.2)
Data 20.7 (36.8) 28.3 (44.9) 26.8 (41.9) | 25.3 (41.0)
Computat. | 70.9 (37.0) | 64.2 (40.8) | 58.8 (43.5) | 64.8 (40.8)
Interface 48.7 (38.5) | 30.7 (33.5) | 24.6 (29.4) | 34.1 (35.1)

Cosmetlc

8.3 (28.2)

7.7 (27.2)

10.8 (31.3)

54.1 (29.2)

54.8 (24.5)

41.2 (286.1)

50.0 (27.3)

-"- “a e Te s e s e
AR TR

hd
LAYS JADASYE, Y

E‘-‘-- AN Y (S A SAMEIERICASIICAEA SIS AASA L LA A

;

i DA P

Figure 18. Characterization of faults detected by the three
techniques: 10 omisslon (O) vs. 24 commisslon (x). The
vertical axls Is the number of persons using the particular
technique that observed the fault.

Readlng Functlonal Structural
100%
O Ox0O
pooed Oxxx Ox
Oxxx X
0] X X
75% X xOxxx X
xO X 0]
XXX XX XXX
XX po'd
X X
50% Oxx
xxxO xOxxxX
Ox X
X Ox
XX X
25% Ooxx XXX
XXXX xO
(o} 0
x00x0O 0x00
0% x0O0x0O xOx Ooxx

W WL TR

Figure 17. Characterization of faults detected by the three

technlques: Initializatlon (2-A), computation (8-P), con-
trol (7-C), data (3-D), Interface (13-I), and cosmetlc (1-S).
The vertical axls 1s the number of persons using the par-

ticular techn!

ue that observed the fault.

Reading Functlonal Structural
100%
) PIP
P PIC PC
CII I
P A P
75% Cc ACPPC C
AP C P
AIP cC PCP
CcC PC
D A
50% CPI
oo DPII

R

Flgure 18. Characterization of the faults observable, but not reported.

Functional Structural Overall
Testl_ng_ TestlAL —_—
. Omlssion 15.7 (25.4) 21.3 (31.8) 18.5 (28.8)
 Commisston | 101 (20.0) | 20.1 (16.8) 19.6 (18.3)
~ Total | , , 19.0 (17.3)
Initial. 9.8 (25.5)
2 Control 20.3 (30.8) 21.1 (31.4) 20.7 (30.8)
- Data 28.8 (43.5) 7.5 (24.5) 18.3 (38.7)
Computat. 16.0 (31.3) 20.1 (37.8) 18.0 (34.5)
Interface 16.1 (20.0) 20.3 (21.5) 18.2 (20.8)

Cosmetle 80.0 (50.3) 85.7 (35.9 73.2 (44.9)
| Total 18.1 (17.8) 19.9 (18.8) [19.0 (17.3)

Y (A T . - - . tel T Y e e tes s - - . - .. e - - .. w e - - . e DA AR (e RhaC iy - PN -

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dl(.‘EnlotedL

| REPORT DOCUMENTATION PAGE BEF o R RM

REP R!: TR' . u; 8 O 2. GOVT ACCESS-ION No./l R.ECIPIENT'S CATALOG NUMBER
o RELS ’ SAD—A /60 A3

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
; COMPARING THE EFFECTIVENESS OF SOFTWARE
\ TESTING STRATEGIES Technical Report
. 6. PERFORMING OG. REPORT NUMBER
; TR~ 1
: 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

(<]

Victor R. Basili and Richard W. Selby, Jr. HBOM=F49620-80-C-001

‘. 9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
Department of Computer Science (i, //() /CT

University of Maryland _
College Park, Maryland 20742 41;242;6)6/ ‘fﬁqélr

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
X Math. & Info. Sciences, AFOSR May 198
- Bolling AFB 13. NUMBER OF PAGES

Washington, D. C. 20332

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY Ci.ASS. (of this report)
UNCLASSIFIED

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19 K EY WORDS (Continue on reverse side if necessary and identify by dlock number)
software testing, functional testing, structural testing, code reading,
off-line software review, empirical study, methodology evaluation,
software measurement

20 ABSTRACT ‘Continue on reverse side !f necessary and identify by block number) Thig study compares the

- strategies of code reading, functional testing, and structural testing in

2 three aspects of software testing: fault detection effectiveness, fault
detectiun cost, and classes of faults detected. Thirty-two professional
programmers and 42 advanced students a-plied the three techniques to four
unit~-sized programs in a fractional factorial experimental design. The major

. results of this study are the following. 1) With the professional programmers,
N code reading detected more software faults and had a higher fault detection

. DD , 23" 1473 £0iTion oF ! NOV 8515 OBSOLETE UNCLASSIFIED

‘: SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

IR R R S LI
Pl R P .. - L A
e

-'. o

LSRR

1
’,

" TR

3
hlale .

[

- SR

AL WM

-
-
-
-
<
-

?

L)
-

LI

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

rate than did functional or structural testing, while functional testing
detected more faults than did structural testing, but functional and struc-
tural testing were not different in fault detection rate. 2) In one advanced
student subject group, code reading and functional testing were not different
in faults found, but were both superior to structural testing, while in the
other advanced student subject group there was no difference among the tech-~
niques. 3) With the advanced student subjects, the three techniques were not
different in fault detection rate. 4) Number of faults observed, fault
detection rate, and total effort in detection depended on the type of software
tested. 5) Code reading detected more interface faults than did the other
methods. 6) Functional testing detected more control faults than did the
other methods. 7) When asked to estimate the percentage of faults detected,

code readers gave the most accurate estimates while functional testers gave
the least accurate estimates.

»'-'.'b'-'-‘--- »" - "
O S S

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tu'® PAGE(When Dats Entered)

N e e et e T e et et TN T e ST N T T
YOO CULRPN R L R L R LUV DA T TSRS TR N U

- Ey Lol
L . LT I

CY
ARV P

